Journal of Thermal Analysis and Calorimetry

, Volume 131, Issue 3, pp 2477–2490 | Cite as

Hydration of Portland cement with red mud as mineral addition

  • R. C. O. Romano
  • H. M. Bernardo
  • M. H. Maciel
  • R. G. Pileggi
  • M. A. Cincotto


The use of red mud from Bayer process in association with Portland cement has been shown to be promising because of its good performance on the hardened state. However, the physicochemical interactions during the cement reaction have not been explored in depth in the literature. As the red mud is rich in iron, aluminates, silicate and, mainly, sodium components, the interaction with Portland cement is rather complex. Additionally, the large amount of finer particles can introduce another variable in the development of hydrated compounds. This work was aimed at evaluating the impact from partial substitution of Portland cement for different contents of red mud collected in an alumina production plant in the northeast of Brazil. The hydration reaction was monitored by isothermal conduction calorimetry and the setting time of cement by the Vicat test. The results indicate that the residue of bauxite ore affects the chemical reaction of cement, due to nucleation effects, packing and dilution, and the high amount of sodium and soluble aluminates from the red mud causes the formation of sodium silicoaluminate hydrate (NASH) and a greater amount of hydrated calcium aluminate, which had no effect on the setting time.


Portland cement Red mud Hydration Nucleation 



The authors thank the CNPq Research Grant 433711/2016-7, Alcoa Latin America and the Laboratório de Microestrutura e Ecoeficiência (LME) for their financial support and Instituto de Pesquisas Tecnológicas (IPT) for the collaboration in the chemical characterization of the raw materials.


  1. 1.
    Papadakis VG, Tsimas S. Physical and chemical characteristics affecting the durability of concrete. Cem Concr Res. 2002;32:1525–32.CrossRefGoogle Scholar
  2. 2.
    Klauber C, Gräfe M, Power G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy. 2011;108:11–32.CrossRefGoogle Scholar
  3. 3.
    Liberato CC, Romano RCO, Montini M, Gallo JB, Gouvea D, Pileggi RG. Effect of bauxite residue calcination on rheological and hardened properties of suspensions with Portland cement. Ambiente Construído. 2013;12:15–25 (in portuguese).Google Scholar
  4. 4.
    Antunes MLP, Conceição FT, Navarro GRB. Caracterização da lama vermelha brasileira (resíduo do refino da bauxita) e avaliação de suas propriedades para futuras aplicações. In: 3rd international workshop advances in cleaner production. São Paulo, Maio; 2011 (in portuguese).Google Scholar
  5. 5.
    Silva Filho EB, Alves MCM, da Motta M. Lama vermelha da indústria de beneficiamento de alumina: produção, características, disposição e aplicações alternativas. Revista Matéria. 2007;12(2):322–38 (in portuguese).CrossRefGoogle Scholar
  6. 6.
    Singh M, Upadhayay SN, Prasad PM. Preparation of iron rich cements using red mud. Cem Concr Res. 1997;27:1037–46.CrossRefGoogle Scholar
  7. 7.
    Singh M, Upadhayay SN, Prasad PM. Preparation of special cements from red mud. Waste Manag. 1996;16:665–70.CrossRefGoogle Scholar
  8. 8.
    Álvarez L et al. Microstructure and durability of cements containing red mud. In: 13th international congress on the chemistry of cement, Madrid; 2011.Google Scholar
  9. 9.
    Lourenço RR et al. Use of bauxite residue as a source of Al2O3 and Fe2O3 in the preparation of Portland cement clinker. In: 13th international congress on the chemistry of cement, Madrid; 2011.Google Scholar
  10. 10.
    Liberato CC, Romano RCO, Gallo JB, Carvalho JC, Gouvêa D, Pileggi RG. Impact of bauxite residue in cement pastes on the hardened state properties. In: Aresty undergraduate research symposium, 2011, New Jersey. Aresty Undergraduate Research Symposium; 2011.Google Scholar
  11. 11.
    Fujji AL, Torres DR, Romano RCO, Cincotto MA, Pileggi RG. Impact of superplasticizer on the hardening of slag Portland cement blended with red mud. Constr Build Mater. 2015;101:432–9.CrossRefGoogle Scholar
  12. 12.
    Romano RCO. Avaliação das interações físico-químicas entre resíduo de bauxita e cimento Portland. Relatório FAPESP—Pós-Doutorado. Processo 2012/19262-2 (in portuguese).Google Scholar
  13. 13.
    Lothenbach B, Scrivener KL, Hooton RD. Supplementary cementitious materials. Cem Concr Res. 2011;41:1244–56.CrossRefGoogle Scholar
  14. 14.
    Berodier E, Scrivener KL. Evolution of pore structure in blended systems. Cem Concr Res. 2015;73:25–35.CrossRefGoogle Scholar
  15. 15.
    Lawrence P, Cyr M, Ringot E. Mineral admixture in mortars. Effect of inert materials on short-term hydration. Cem Concr Res. 2003;33:1939–47.CrossRefGoogle Scholar
  16. 16.
    Romano RCO, Liberato CC, Montini M, Gallo JB, Cincotto MA, Pileggi RG. Evaluation of transition from fluid to elastic solid of cementitious pastes with bauxite residue using oscillation rheometry and isothermal calorimetry. Appl Rheol. 2013;23:23830.Google Scholar
  17. 17.
    Romano RCO, Fujii AL, Souza RB, Takeashi MS, Pileggi RG, Cincotto MA. Acompanhamento da hidratação de cimento Portland simples com resíduo de bauxita. Cerâmica. 2016;62:215–23 (in portuguese).CrossRefGoogle Scholar
  18. 18.
    Jiang S, Van Damme H. Influence de fillers de nature différente sur l’hydratation et la texture des pâtes de C3S. Rapport CRMD-ATILH: Université d’Orléans; 1996.Google Scholar
  19. 19.
    Soroka I, Stern N. Calcareous fillers and the compressive strength of Portland cement. Cem Concr Res. 1976;6:367–76.CrossRefGoogle Scholar
  20. 20.
    Massazza F, Daimon M. Chemistry of hydration of cements and cementitious systems. In: 9th international congress on the chemistry of cement, New Delhi; 1992. pp. 383–429.Google Scholar
  21. 21.
    Jiang SP, Mutin JC, Nonat A. Effect of fillers (fine particles) on the kinetics of cement hydration. In: Proceedings of 3rd Beijing international symposium on cement and concrete III, Beijing; 1993. pp. 132–137.Google Scholar
  22. 22.
    Gutteridge WA, Dalziel JA. Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cem Concr Res. 1990;20:778–82.CrossRefGoogle Scholar
  23. 23.
    Buil M, Paillère AN, Roussel B. High strength mortars containing condensed silica fume. Cem Concr Res. 1984;14:693–704.CrossRefGoogle Scholar
  24. 24.
    Cheng-yi H, Feldman RF. Hydration reactions in portland cement–silica fume blends. Cem Concr Res. 1985;15:585–92.CrossRefGoogle Scholar
  25. 25.
    Meland I. Influence of condensed silica fume and fly ash on the heat evolution in cement pastes. In: Proceedings of CANMET/ACI 1st international conference on the use of fly ash, slag and other mineral by-products in concrete, vol. II. ACI Publication. Montebello. Canada; 1983. pp. 665–676.Google Scholar
  26. 26.
    Hanna B. Contribution à l’étude de la structuration des mortiers de ciment Portland contenant des particules ultrafines, Ph.D. Thesis INSA Toulouse; 1987.Google Scholar
  27. 27.
    Gutteridge WA, Dalziel JA. Filler cement: the effect of the secondary component on the hydration of Portland cement: part 2: fine hydraulic binders. Cem Concr Res. 1990;20:853–61.CrossRefGoogle Scholar
  28. 28.
    Maltais Y, Marchand J. Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars. Cem Concr Res. 1997;27:1009–20.CrossRefGoogle Scholar
  29. 29.
    Taylor HFW. Cement chemistry. London, UK: Academic Press; 1990.Google Scholar
  30. 30.
    Takemoto K, Uchikawa H. Hydration of pozzolanic cement. In: Proceedings 7th international congress on the chemistry of cement, Editions Septima.Google Scholar
  31. 31.
    Kurdowski W, Nocun-Wczelik W. The tricalcium silicate hydration in the presence of active silica. Cem Concr Res. 1983;13:341–8.CrossRefGoogle Scholar
  32. 32.
    Stephant S, Cea LC, Nonat A, Charpentier T. Study of the hydration of cement with high slag content. In: 34th cement and concrete science. Conference paper number 189. September 2014:14–17. University of Sheffield.Google Scholar
  33. 33.
    Stumm W. Chemistry of the Solid – Water Interface. New York: Wiley; 1992.Google Scholar
  34. 34.
    International Organization for standardization—ISO 29581—Cement: test methods: part 2: chemical analysis by X-ray florescence. 2009.Google Scholar
  35. 35.
    Association Française de Normalization. NF P 18-513—Métakaolin, addition pouzzolanique pour bétons: Définitions, spécifications, critères de conformité. Mars 2010 (in french).Google Scholar
  36. 36.
    Associação Brasileira de Normas Técnicas. NBR NM 65/03—Cimento Portland—Determinação dos tempos de pega. Rio de Janeiro. 2003.Google Scholar
  37. 37.
    Montini M, Gallo JB, Martins LT, Maia EL, Yamamoto CF, Lourenço RR, Rodrigues JA. Aplicações do resíduo de bauxita e da cinza pesada da indústria do alumínio na fabricação de cimento Portland. In: 53° Congresso Brasileiro de Cerâmica; 2009, Guarujá, SP (in portuguese).Google Scholar
  38. 38.
    Ribeiro DV, Morelli MR. Estudo da viabilidade da utilização do resíduo de bauxita como adição ao cimento Portland. In: 18° CBECiMAT—Congresso Brasileiro de Engenharia e Ciência dos Materiais, 2008, Pernambuco (in portuguese).Google Scholar
  39. 39.
    Pera J, Boumaza R, Ambroise J. Development of a pozzolanic pigment from red mud. Cem Concr Res. 1997;27:1513–22.CrossRefGoogle Scholar
  40. 40.
    Ambroise J, Pera J. Red mud, an interesting secondary raw material. In: Proceedings of a symposium on construction and environment: theory into practice. São Paulo, Nov, 2000.Google Scholar
  41. 41.
    Ambroise J, Murat M, Pera J. Hydration reaction and hardening of calcined clays and related minerals. IV. Experimental conditions for strength improvement on metakaolinite minicylinders. Cem Concr Res. 1985;15:83–8.CrossRefGoogle Scholar
  42. 42.
    Manfroi EP. Avaliação da lama vermelha como material pozolânico em substituição ao cimento para produção de argamassas. Dissertação: Universidade Federal de Santa Catarina; 2009.Google Scholar
  43. 43.
    Funk JE, Dinger DR. Particle packing II—review of packing of polydisperse particle system. Interceram. 1992;41(2):95–7.Google Scholar
  44. 44.
    Oliveira IR, Pileggi RG, Studart AR, Pandolfelli VC. Dispersion and packing of particles. Fazendo arte Editora. 2000 (in portuguese).Google Scholar
  45. 45.
    Sant G, Ferraris CF, Weiss J. Rheological properties of cement pastes: a discussion of structure formation and mechanical property development. Cem Concr Res. 2008;38:1286–96.CrossRefGoogle Scholar
  46. 46.
    Lootens D, Jousset P, Martinie L, Roussel N, Flatt RJ. Yield stress during setting of cement pastes from penetration tests. Cem Concr Res. 2009;39:401–8.CrossRefGoogle Scholar
  47. 47.
    Struble LJ, Lei WG. Rheological changes associated with setting of cement paste. Adv Cem Based Mater. 1995;2:224–30.CrossRefGoogle Scholar
  48. 48.
    Zhang J, Weissinger EA, Peethamparan S, Scherer GW. Early hydration and setting of oil well cement. Cem Concr Res. 2010;40:1023–33.CrossRefGoogle Scholar
  49. 49.
    Sleiman H, Perrot A, Amziane S. A new look at the measurement of cementitious paste setting by Vicat test. Cem Concr Res. 2010;40:681–6.CrossRefGoogle Scholar
  50. 50.
    Nonat A, Mutin JC, Lecoq X, Jiang SP. Physico-chemical parameters determining hydration and particle interactions during the setting of silicate cements. Solid State Ionics. 1997;101:923–30.CrossRefGoogle Scholar
  51. 51.
    Chawaniec O. Limestone addition in cement. EPFL—thesis 5335; 2012.Google Scholar
  52. 52.
    Kocaba V, Gallucci E, Scrivener KL. Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res. 2012;42:511–25.CrossRefGoogle Scholar
  53. 53.
    Kumar A, Oey T, Kim S, Thomas D, Badran S, Li J, Fernandes F, Neithalath N, Sant G. Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials. Cem Concr Compos. 2013;42:20–9.CrossRefGoogle Scholar
  54. 54.
    Juilland P, Gallucci E, Scrivener KL, Flatt RJ. Mechanisms of hydration of cementitious materials at early age. In: 13th international congress on the chemistry of cement. Madrid; 2011.Google Scholar
  55. 55.
    Atasoy A. An investigation on characterization and thermal analysis of the Aughinish red mud. J Therm Anal Calorim. 2005;81:357–61.CrossRefGoogle Scholar
  56. 56.
    Tsakiridis PE, Leonardou SA, Oustadakis P. Red mud addition in the raw meal for the production of Portland cement clinker. J Hazard Mater. 2004;116:103–10.CrossRefGoogle Scholar
  57. 57.
    ASTM C1679/13, Standard practice for measuring hydration kinetics of hydraulic cementitious mixtures using isothermal calorimetry.Google Scholar
  58. 58.
    Cyr M, Lawrence P, Ringot E. Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength. Cem Concr Res. 2005;35:1092–105.CrossRefGoogle Scholar
  59. 59.
    Cyr M, Lawrence P, Ringot E. Mineral admixtures in mortars: quantification of the physical effects of inert materials on short-term hydration. Cem Concr Res. 2005;35:719–30.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • R. C. O. Romano
    • 1
  • H. M. Bernardo
    • 1
  • M. H. Maciel
    • 1
  • R. G. Pileggi
    • 1
  • M. A. Cincotto
    • 1
  1. 1.Department of Civil Construction EngineeringEscola Politécnica – University of São PauloSão PauloBrazil

Personalised recommendations