Abstract
The main purpose of this research is to investigate the effect of using SiC/water and MgO/water nanofluids on convection heat transfer in a circular tube with constant heat flux boundary condition. Thermophysical properties of these nanofluids, such as viscosity, density, and thermal conductivity, have also been measured and reported. SiC nanoparticles with 50 nm diameters at 0.04–0.2% volume concentrations and MgO nanoparticles with a size of 40 nm and volume concentration ranging from 0.02 to 0.12% are used to make the nanofluids. This study is done in a vertically oriented straight stainless steel tube under turbulent flow condition. Results of heat analysis showed that both Gnielinski and Hausen correlations underpredict the experimental data. Two models have been developed to predict heat parameters of nanofluids based on Gnielinski and Hausen correlations using experimental data. Modified correlations can precisely estimate Nusselt number and heat transfer coefficient of nanofluids in the range of nanoparticles studied with maximum errors of less than 1%. The average increase in Nusselt number for SiC/water and MgO/water nanofluids in the entire range of Reynolds number and volume percent used in this work is 8.88 and 5.71%, respectively, compared to distilled water under similar conditions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- A :
-
Tube cross-sectional area (m2)
- a, b, c :
-
Constant (dimensionless)
- \(C_{\text{P}}\) :
-
Specific heat capacity (kJ kg−1 K−1)
- D :
-
Diameter (m)
- d :
-
Nanoparticle diameter (nm)
- h :
-
Heat transfer coefficient (W m−2 K−1)
- I :
-
Electrical current (A)
- k :
-
Thermal conductivity (W m−1 K−1)
- L :
-
Length (m)
- m :
-
Mass (kg)
- \(\dot{m}\) :
-
Mass flow rate (kg s−1)
- Nu:
-
Nusselt number (dimensionless)
- S :
-
Tube perimeter (m)
- Pr:
-
Prandtl number (dimensionless)
- Q :
-
Thermal power (W)
- \(\dot{q}\) :
-
Heat flux (W m−2)
- Re:
-
Reynolds number (dimensionless)
- T :
-
Temperature (K)
- u :
-
Mean fluid velocity (m s−1)
- V :
-
Volume (m3) or voltage (v)
- x :
-
Axial direction (m)
- \(f_{\text{i}}\) :
-
Friction factor (dimensionless)
- \(\delta_{\text{V}}^{ + }\) :
-
Dimensionless thickness of laminar sublayer
- ∅:
-
Nanoparticle volume fraction in nanofluid
- μ :
-
Dynamic viscosity (kg m−1 s−1)
- ν :
-
Kinematic viscosity (m2 s−1)
- ρ :
-
Density (kg m−3)
- b:
-
Bulk
- bf:
-
Base fluid
- in:
-
Inlet condition
- nf:
-
Nanofluid
- out:
-
Outlet condition
- s:
-
Solid particle
- w:
-
Wall
- wnf:
-
Nanofluid at water temperature
- CNT:
-
Carbon nanotube
- Exp:
-
Experimental
- EG:
-
Ethylene glycol
- MW:
-
Multiwalled
- NP:
-
Nanoparticle
- W:
-
Water
References
Ahuja AS. Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J Appl Phys. 1975;46:3408–16.
Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed. 1995;231:99–106.
Khoshvaght-Aliabadi M, Pazdar S, Sartipzadeh O. Experimental investigation of water based nanofluid containing copper nanoparticles across helical microtubes. Int Commun Heat Mass Transf. 2016;70:84–92. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.006.
Patel HE, Das SK, Sundararajan T, Sreekumaran Nair A, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931.
Xing M, Yu J, Wang R. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int J Heat Mass Transf. 2015;88:609–16. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005.
Ahammed N, Asirvatham LG, Titus J, Bose JR, Wongwises S. Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. Int Commun Heat Mass Transf. 2016;70:66–74. https://doi.org/10.1016/j.icheatmasstransfer.2015.11.002.
Li X, Zou C, Zhou L, Qi A. Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. Int J Heat Mass Transf. 2016;97:631–7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.056.
Shahrul IM, Mahbubul IM, Saidur R, Sabri MFM. Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf. 2016;97:547–58. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.016.
Guo S-Z, Li Y, Jiang J-S, Xie H-Q. Nanofluids containing γ-Fe2O3 nanoparticles and their heat transfer enhancements. Nanoscale Res Lett. 2010;5:1222–7.
Nemade K, Waghuley S. A novel approach for enhancement of thermal conductivity of CuO/H2O based nanofluids. Appl Therm Eng. 2016;95:271–4.
Chen J, Zhai F, Liu M, Hou X, Chou KC. SiC Nanowires with tunable hydrophobicity/hydrophilicity and their application as nanofluids. Langmuir. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27223246.
Senthilkumar D. Thermophysical behavior of cryogenically treated silicon carbide for nanofluids. Mater Manuf Process. 2014;29:819–25. https://doi.org/10.1080/10426914.2014.892976.
Yanuar, Putra N, Gunawan, Baqi M. Flow and convective heat transfer characteristics of spiral pipe for nanofluids. Int J Res Rev Appl Sci. 2011;7:236–48.
Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8. http://linkinghub.elsevier.com/retrieve/pii/S0304885316308198.
Hemmat Esfe M, Afrand M, Gharehkhani S, Rostamian H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transf. 2016;76:202–8. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.013.
Hemmat Esfe M, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90. https://doi.org/10.1016/j.expthermflusci.2016.07.011.
Hemmat Esfe M, Hassani Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.002.
Babita, Sharma SK, Mital GS. Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci. 2016;79:202–12. http://linkinghub.elsevier.com/retrieve/pii/S0894177716301728.
Xie H, Wang J, Xi T, Liu Y. Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys. 2002;23:571–80.
Singh D, Timofeeva E, Yu W, Routbort J, France D, Smith D, et al. An investigation of silicon carbide–water nanofluid for heat transfer applications. J Appl Phys. 2009;105(6):064306.
Lee SW, Park SD, Kang S, Bang IC, Kim JH. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf. 2011;54:433–8. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.026.
Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.
Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids. Nanotechnology. 2010;21:215703.
Manna O, Singh SK, Paul G. Enhanced thermal conductivity of nano-SiC dispersed water based nanofluid. Bull Mater Sci. 2012;35:707–12.
Esfahani MA, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of silica/water–ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq. 2017;232:105–12. https://doi.org/10.1016/j.molliq.2017.02.037.
Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67. https://doi.org/10.1007/s10973-017-6213-8.
Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35. https://doi.org/10.1007/s10973-016-5436-4.
Hemmat Esfe M, Rostamian H, Toghraie D, Yan WM. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle: effects of temperature and solid volume fraction. J Therm Anal Calorim. 2016;126:643–8. https://doi.org/10.1007/s10973-016-5506-7.
Hemmat Esfe M, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40Â %) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43. https://doi.org/10.1007/s10973-016-5469-8.
Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.
Hemmat Esfe M, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Abbasian Arani AA, et al. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transf. 2017;82:154–60. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.015.
Yu W, France DM, Smith DS, Singh D, Timofeeva EV, Routbort JL. Heat transfer to a silicon carbide/water nanofluid. Int J Heat Mass Transf. 2009;52:3606–12. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.036.
Celata GP, D’Annibale F, Mariani A, Saraceno L, D’amato R, Bubbico R. Heat transfer in water-based SiC and TiO2 Nanofluids. Heat Transf Eng. 2013;34:1060–72. https://doi.org/10.1080/01457632.2013.763542.
Hemmat Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluid Sci. 2014;52:68–78. https://doi.org/10.1016/j.expthermflusci.2013.08.023.
Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119:1205–13.
Zhang J, Diao Y, Zhao Y, Zhang Y. Thermal-hydraulic performance of SiC–Water and Al2O3–water nanofluids in the minichannel. J Heat Transfer. 2015;138:021705.
Kim KM, Jeong YS, Kim IG, Bang IC. Comparison of thermal performances of water-filled, SiC nanofluid-filled and SiC nanoparticles-coated heat pipes. Int J Heat Mass Transf. 2015;88:862–71. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.108.
Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl Therm Eng. 2015;90:127–35. https://doi.org/10.1016/j.applthermaleng.2015.07.004.
Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Phys E Low Dimens Syst Nanostruct. 2017;85:103–8. https://doi.org/10.1016/j.physe.2016.08.022.
Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO nanofluid in a sinusoidal channel with a porous medium. Phys E Low Dimens Syst Nanostruct. 2017;87:134–40. https://doi.org/10.1016/j.physe.2016.11.035.
Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22. https://doi.org/10.1007/s10973-017-6372-7.
Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids. 2017;61:25–32. https://doi.org/10.1016/j.euromechflu.2016.09.014.
Aghajani M, Müller-Steinhagen H, Jamialahmadi M. New design equations for liquid/solid fluidized bed heat exchangers. Int J Heat Mass Transf. 2005;48:317–29. http://linkinghub.elsevier.com/retrieve/pii/S0017931004003710.
Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.
Pakdaman MF, Akhavan-Behabadi MA, Razi P. An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Therm Fluid Sci. 2012;40:103–11. https://doi.org/10.1016/j.expthermflusci.2012.02.005.
Gnielinski V. New equations for heat and mass-transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16:359–68.
Filonenko GK. Hydraulic resistance in pipes. Teploenergetika. 1954;1:40–4.
Kayhani MH, Soltanzadeh H, Heyhat MM, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf. 2012;39:456–62.
Heyhat MM, Kowsary F, Rashidi AM, Alem Varzane Esfehani S, Amrollahi A. Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime. Int Commun Heat Mass Transf. 2012;39:1272–8.
Ferrouillat S, Bontemps A, Ribeiro J-P, Gruss J-A, Soriano O. Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. Int J Heat Fluid Flow. 2011;32:424–39.
Torii S. Turbulent heat transfer behavior of nanofluid in a circular tube heated under constant heat flux. Adv Mech Eng. 2015;2:917612.
Hausen H. New equations for heat transfer in free or force flow. Allg Warmetchn. 1959;9:75–9.
Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240.
Marquis FDS, Chibante LPF. Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. JOM. 2005;57:32–43.
Zhou S-Q, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:093123.
Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97.
Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle—fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.
Einstein A. A new determination of molecular dimensions. Ann Phys. 1906;324:289–306.
Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.
Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon press; 1873.
Kakaç S, Pramuanjaroenkij A. Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids—a state-of-the-art review. Int J Therm Sci. 2016;100:75–97. http://linkinghub.elsevier.com/retrieve/pii/S1290072915002823.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dabiri, E., Bahrami, F. & Mohammadzadeh, S. Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition. J Therm Anal Calorim 131, 2243–2259 (2018). https://doi.org/10.1007/s10973-017-6791-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-017-6791-5