Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel

  • Adnan Topuz
  • Tahsin Engin
  • A. Alper Özalp
  • Beytullah Erdoğan
  • Serdar Mert
  • Alper Yeter
Article
  • 86 Downloads

Abstract

This paper presents thermal performance and pressure drop characteristics of water-based nanofluids flowing through a horizontal circular microchannel under the constant surface temperature condition, experimentally. Al2O3 (13 nm), TiO2 (10–25 nm) and ZnO (18 nm) nanoparticles with 0.5, 0.7 and 1.0% volume concentrations were used in order to prepare nanofluid. The thermal conductivity and viscosity values needed for the calculations were obtained by measuring separately. For the experiments, the microchannels made by both the different materials (Stainless steel, PEEK) and the different inner diameter (400, 750, 1000 μm) were tested for the different surface temperatures (283, 298, 313 K). In the tests, the nanofluids had the different inlet temperature (323–333 K), the volume flow rates (20, 35, 50 mL min−1) and the concentrations. Heat transfer rate, Nusselt number, pressure drop and friction factor results were calculated. The optimum conditions were determined by using Taguchi approach. The thermal performance and the pressure drop of the fluids were compared. The results showed that the best thermal performance was obtained for Al2O3 nanofluid with 1.0% vol. concentration. A heat transfer enhancement of 15.3% was achieved using nanofluid instead of deionized water as the base fluid. Moreover, it has been seen no considerable pressure drop.

Keywords

Nanofluid Heat transfer rate enhancement Nusselt number Pressure drop Taguchi approach 

List of symbols

A

Area \(\left( {{\text{m}}^{2} } \right)\)

cp

Specific heat (J kg−1 K−1)

d

Diameter for nanoparticle \(\left({\text{nm}} \right)\)

\(D\)

Diameter for tube \(\left( {\text{m}} \right)\)

D.

Deionized

f

Friction factor

g

Gravitational acceleration (9.81 m s−2)

Gz

Graetz number

h

Convection heat transfer coefficient (W m−2 K−1)

k

Thermal conductivity (W m−1 K−1)

K

Local loss coefficient

L

Length \(\left( {\text{m}} \right)\)

m

Mass \(\left( {\text{kg}} \right)\)

\(\dot{m}\)

Mass flow rate (kg s−1)

\(n\)

Number of data

\({\text{MSD}}\)

Mean-squared deviation

\(Nu\)

Nusselt number

\(P\)

Pressure \(\left( {\text{Pa}} \right)\)

\({\text{PEEK}}\)

Poly ether ether ketone

\(Pr\)

Prandtl number

\(Q\)

Heat transfer rate \(\left( {\text{W}} \right)\)

\(R\)

Result, data

\(Re\)

Reynolds number

\(S/N\)

Signal/noise

\({\text{SDS}}\)

Sodium dodecyl sulfate

\({\text{SEM}}\)

Scanning electron microscopy

\({\text{SS}}\)

Stainless steel

\(T\)

Temperature (°C)

\(t\)

Student’s t value

U

Uncertainty

X

Measured variable

Y

Calculated variable

V

Velocity (m s−1)

z

Height \(\left( {\text{m}} \right)\)

\(\forall\)

Volume \(\left( {{\text{m}}^{3} , \;{\text{L}}} \right)\)

\(\dot{\forall }\)

Volumetric flow rate (m3 s−1)

Greek symbols

\(\alpha\)

Thermal diffusivity (m2 s−1)

\(\Delta\)

Variation or difference of a parameter

\(\varepsilon\)

Roughness \(\left( {\text{m}} \right)\)

\(\vartheta\)

Kinematic viscosity (m2 s−1)

\(\vartheta\)

Degree of freedom

\(\mu\)

Dynamic viscosity \(\left( {\text{Pa s}} \right)\)

\(\rho\)

Density (kg m−3)

\(\sigma\)

Standard deviation

\(\phi\)

Volumetric concentration ratio

\(\phi_{\text{w}}\)

Mass concentration ratio

Subscripts

act

Actual

avg

Average

bf

Base fluid

EE

Entry effect

f

Friction loss

z

Height loss

i

i tube, ith data

in

Inlet

k

Local loss

L

Local, loss

in

Logarithmic

mic

Microtube

nf

Nanofluid

np

Nanoparticle

s

Surface

out

Outlet

T

Total

w

Weight

Notes

Acknowledgements

This project was supported by “The Scientific and Technological Research Council Of Turkey” (TUBITAK 1505, Project Number 5140013) and Kale Oto Radyatör Sanayi ve Ticaret A.Ş. The authors gratefully acknowledge the financial supports provided by TUBITAK and Kale Oto Radyatör.

References

  1. 1.
    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. San Francisco: International Mechanical Engineering Congress and Exposition; 1995.Google Scholar
  2. 2.
    Şahin B, Çomaklı K, Çomaklı Ö, Yılmaz M, Nanoakışkanlar ile ısı transferinin iyileştirilmesi (Heat transfer rate improvement with nanofluids). Mühendis ve Makina, Cilt: 47, Sayı: 559, Sf: 29–34. 2006.Google Scholar
  3. 3.
    Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.CrossRefGoogle Scholar
  4. 4.
    The other areas of utilization of nanofluids: NanoHEX Report Summary, cordis.europa.eu/project/rcn/92594_en.html. Access 04 Feb 2017.Google Scholar
  5. 5.
    Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Thermal Fluid Sci. 2013;44:483–9.CrossRefGoogle Scholar
  6. 6.
    Karimzadehkhouei M, Yalçın SE, Şendur K, Mengüç MP, Koşar A. Pressure drop and heat transfer characteristics of nanofluids in horizontal microtubes under thermally developing flow conditions. Exp Thermal Fluid Sci. 2015;67:37–47.CrossRefGoogle Scholar
  7. 7.
    Nasiri M, Etemad SGh, Bagheri R. Experimental heat transfer of nanofluid through an annular duct. Int Commun Heat Mass Transf. 2011;38:958–63.CrossRefGoogle Scholar
  8. 8.
    Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008;28:1774–81.CrossRefGoogle Scholar
  9. 9.
    Witry A, Al-Hajeri MH, Bondok AA. Thermal performance of automotive aluminium plate radiator. Appl Therm Eng. 2005;25:1207–18.CrossRefGoogle Scholar
  10. 10.
    Çetin S. Motorlu taşıt radyatörlerinde kullanılan panjur tip kanatlarda ısı transferi ve akışının incelenmesi (Inspection of the heat transfer and flow in the louvered fins used in the vehicle radiators). Kocaeli University, Institute of Natural Sciences, Department of Mechanical Engineering, Master’s Thesis, 2009.Google Scholar
  11. 11.
    Canbolat AS, Türkan B, Yamankaradeniz R, Can M, Etemoğlu AB. Otomobil radyatörlerinde boru sayısının ısıl performansa ve etkenliğe etkisinin incelenmesi (Investigation of the effect of the tube number auto radiators on thermal performance and effectiveness). 7. Otomotiv Teknolojileri Kongresi, Bursa, 1–6. 2014.Google Scholar
  12. 12.
    Choi S. Nanofluids for improved efficiency in cooling systems. Lemont: Argonne National Laboratory; 2006.Google Scholar
  13. 13.
    Elias MM, Mahbubul IM, Saidur R, Sohel MR, Shahrul IM, Khaleduzzaman SS, Sadeghipour S. Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. Int Commun Heat Mass Transf. 2014;54:48–53.CrossRefGoogle Scholar
  14. 14.
    Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.CrossRefGoogle Scholar
  15. 15.
    Mukherjee S, Paria S. Preparation and stability of nanofluids: a review. IOSR J Mech Civil Eng. 2013;9(2):63–9.CrossRefGoogle Scholar
  16. 16.
    Şahin B, Gültekin GG, Manay M, Karagöz Ş. Experimental investigation of heat transfer and pressure drop characteristics of Al2O3–water nanofluid. Exp Thermal Fluid Sci. 2013;50:21–8.CrossRefGoogle Scholar
  17. 17.
    Azmi WH, Sharma KV, Sarma PK, Mamat R, Najafi G. Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int Commun Heat Mass Transfer. 2014;59:30–8.CrossRefGoogle Scholar
  18. 18.
    Bhanvase BA, Sarode MR, Putterwar LA, Abdullah KA, Deosarkar MP, Sonawane SH. Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles. Chem Eng Process. 2014;82:123–31.CrossRefGoogle Scholar
  19. 19.
    Topuz A, Engin T, Özalp AA, Erdoğan B, Yurduseven S, Mert S, Perut A. Preparation and stability analysis of water based Al2O3, TiO2 and ZnO nanofluids. In: International conference on engineering and natural sciences, Sarajevo, pp. 610–21. 2016.Google Scholar
  20. 20.
    Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S. Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts. Int J Therm Sci. 2014;81:84–93.CrossRefGoogle Scholar
  21. 21.
    Duangthongsuk W, Wongwises S. Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance. Exp Thermal Fluid Sci. 2010;34:616–24.CrossRefGoogle Scholar
  22. 22.
    Haghighi EB, Saleemi M, Nikkam N, Anwar Z, Lumbreras I, Behi M, Mirmohammadi SA, Poth H, Khodabandeh R, Toprak M, Muhammed M, Palm B. Cooling performance of nanofluids in a small diameter tube. Exp Thermal Fluid Sci. 2013;49:114–22.CrossRefGoogle Scholar
  23. 23.
    Ghajar AJ, Tang CC, Cook WL. Experimental investigation of friction factor in the transition region for water flow in minitubes and microtubes. Heat Transf Eng. 2010;31(8):646–57.CrossRefGoogle Scholar
  24. 24.
    Touloukian YS, Powell RW, Ho CY, Klemens PG. Thermophysical properties of matter: the TPRC (Thermophysical Properties Research Center) data series, vol. 2. West Lafayette: Purdue University; 1970. p. 97, 208.Google Scholar
  25. 25.
    Touloukian YS, Buyco EH. Thermophysical properties of matter: the TPRC (Thermophysical Properties Research Center) data series, vol. 5. West Lafayette: Purdue University; 1970. p. 27, 249, 292.Google Scholar
  26. 26.
    Adachi S. Handbook on physical properties of semiconductors, II–VI compound semiconductors. Dordrecht: Kluwer Academic Publishers; 2015. p. 69.Google Scholar
  27. 27.
    KD2-Pro Thermal Properties Analyzer, Operator’s Manual, Decagon Devices Inc., pp. 5–6, 2014.Google Scholar
  28. 28.
    SV-10 Vibro Viscometer, Instruction Manual, A&N Company Ltd., p. 58, 2008.Google Scholar
  29. 29.
    Çengel YA, Cimbala JM. Fluid mechanics: fundamentals and applications. 1st ed. New York: McGraw-Hill; 2006.Google Scholar
  30. 30.
    White FM. Viscous fluid flow. 3rd ed. New York: McGraw-Hill; 2006.Google Scholar
  31. 31.
    Maynes D, Webb AR. Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry. Exp Fluids. 2002;32:3–15.CrossRefGoogle Scholar
  32. 32.
    Hwang KS, Jang SP, Choi SUS. Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf. 2009;52:193–9.CrossRefGoogle Scholar
  33. 33.
    Erken N, Mikroboru akışlarındaki ölçüm belirsizlikleri (Measurement Uncertainty in Microtube Flows), MS Thesis, Institute of Natural Science, Sakarya University; 2008.Google Scholar
  34. 34.
    Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1:3–17.CrossRefGoogle Scholar
  35. 35.
    Holman JP. Experimental methods for engineers. 8th ed. New York: McGraw-Hill; 2012.Google Scholar
  36. 36.
    Çengel YA, Ghajar AJ. Heat and mass transfer: fundamentals & applications. 5th ed. New York: McGraw-Hill; 2015.Google Scholar
  37. 37.
    Bergman TL, Lavine AS, Incropera FP, Dewitt DP. Fundamentals of heat and mass transfer. 7th ed. London: Wiley; 2011.Google Scholar
  38. 38.
    Celata GP, Cumo M, Marconi V, McPhail SJ, Zummo G. Microtube liquid single-phase heat transfer in laminar flow. Int J Heat Mass Transf. 2006;49:3538–46.CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Roy RK. A primer on the Taguchi method. 2nd ed. Dearborn: Society of Manufacturing Engineers; 2010.Google Scholar
  41. 41.
    Roy RK. Design of experiments using the Taguchi approach: 16 steps to product and process improvement. London: Wiley; 2001.Google Scholar
  42. 42.
    Topuz A, Engin T, Özalp AA, Erdoğan B, Yurduseven S, Mert S, Perut A. Thermodynamics property measurements of water based Al2O3, TiO2, ZnO nanofluid. In: International conference on engineering and natural sciences, Sarajevo, pp. 622–35; 2016.Google Scholar
  43. 43.
    Żyła G. Viscosity and thermal conductivity of MgO–EG nanofluids. J Therm Anal Calorim. 2017;129(1):171–80.CrossRefGoogle Scholar
  44. 44.
    Selvam C, Lal DM, Harish S. Thermal conductivity and specific heat capacity of water–ethylene glycol mixture-based nanofluids with graphene nanoplatelets. J Therm Anal Calorim. 2017;129(2):947–55.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Adnan Topuz
    • 1
  • Tahsin Engin
    • 2
  • A. Alper Özalp
    • 3
  • Beytullah Erdoğan
    • 1
  • Serdar Mert
    • 2
  • Alper Yeter
    • 4
  1. 1.Department of Mechanical Engineering, Engineering FacultyBülent Ecevit UniversityZonguldakTurkey
  2. 2.Department of Mechanical Engineering, Engineering FacultySakarya UniversitySakaryaTurkey
  3. 3.Department of Mechanical Engineering, Engineering FacultyUludağ UniversityBursaTurkey
  4. 4.Kale Oto Radyatör Sanayi ve Ticaret A.Ş.KocaeliTurkey

Personalised recommendations