Skip to main content
Log in

Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The microencapsulated myristic acid with titanium dioxide (TiO2) shell as shape-stabilized thermal energy storage materials was prepared using sol–gel method. The XRD and FT-IR techniques results presented that characteristic peaks of both myristic acid and TiO2 can be observed in the microencapsulated myristic acid with TiO2 shells. The phase change temperature, latent heat and thermal stability were investigated by a differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). According to these results, the melting and freezing temperatures of the MPCM/TiO2 shell and MPCM/TiO2 shell–fly ash are 56.95 and 52.22 °C; 47.56 and 26.68 °C and the latent heats of melting and freezing are 96.64 kJ kg−1; 97.72 and 23.43 kJ kg−1; and 22.57 kJ kg−1, respectively. TGA results certified that the addition of fly ash improved thermal stability. In particular, MPCM/TiO2 shell displays good thermal reliability after 1000 repeated melting/freezing cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baetens R, Jelle BP, Gustavsen A. Phase change materials for building applications: a state-of-the-art review. Energy Build. 2010;42:1361–8.

    Article  Google Scholar 

  2. Cheng WL, Zhang RM, Xie K, Liu N, Wang J. Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Sol Energy Mater Sol Cells. 2010;94:1636–42.

    Article  CAS  Google Scholar 

  3. Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93:571–6.

    Article  CAS  Google Scholar 

  4. Sharma A, Shukla A, Chen CR, Dwivedi S. Development of phase change materials for building applications. Energy Build. 2013;64:403–7.

    Article  Google Scholar 

  5. Lam PL, Yuen MCW, Kan CW, Wong RSM, Cheng GYM, Lam KH, Gam-bari R, Kok SHL, Chui CH. Development of calendula oil/chitosan microcapsules and their biological safety evaluation. Aust J Chem. 2012;65:72–80.

    Article  CAS  Google Scholar 

  6. Lin P, Tao QH, Zhang SD, Wang SS, Zhang J, Wang SH, Wang ZY, Zhang ZP. Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol Energy Mater Sol Cells. 2012;98:66–70.

    Article  Google Scholar 

  7. Schossig P, Henning HH, Gschwander S, Haussmann T. Microencapsulated phase change materials integrated into construction materials. Sol Energy Mater Sol Cells. 2005;89:297–306.

    Article  CAS  Google Scholar 

  8. Wyss A, Cordente N, Von Stockar U, Marison IW. A novel approach for the extraction of herbicides and pesticides from water using liquid-core microcapsules. Biotechnol Bioeng. 2004;87:734–42.

    Article  CAS  Google Scholar 

  9. Song SK, Dong LJ, Chen S, Xie HA, Xiong CX. Stearic–capric acid eutectic/activated-attapulgiate composite as form-stable phase change material for thermal energy storage. Energy Convers Manag. 2014;81:306–11.

    Article  CAS  Google Scholar 

  10. Li HR, Jiang M, Dong LJ, Xie HA, Xiong CX. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance. Energy Convers Manag. 2013;75:482–7.

    Article  CAS  Google Scholar 

  11. Zou Y, Tuo HF, Hrnjak PS. Modeling refrigerant maldistribution in microchannel heat exchangers with vertical headers based on experimentally developed distribution results. Appl Therm Eng. 2014;64:172–81.

    Article  CAS  Google Scholar 

  12. Cao L, Tang F, Fang G. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy Build. 2014;72:31–7.

    Article  Google Scholar 

  13. Fang G, Li H, Chen Z, Liu X. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. J Hazard Mater. 2010;181:1004–9.

    Article  CAS  Google Scholar 

  14. Yang H, Feng L, Wang C, Zhao W, Li X. Confinement effect of SiO2 framework on phase change of PEG in shape-stabilized PEG/SiO2 composites. Eur Polym J. 2012;48:803–10.

    Article  CAS  Google Scholar 

  15. Zhang S, Wang S, Zhang J, Jiang Y, Ji Q, Zhang Z, Wang Z. Increasing phase change latent heat of stearic acid via nanocapsule interface confinement. J Phys Chem C. 2013;117:23412–7.

    Article  CAS  Google Scholar 

  16. Tan HB, Li YZ, Tuo HF. Experimental study on liquid/solid phase change for cold energy storage of liquefied natural gas (LNG) refrigerated vehicle. Energy. 2010;35:1927–35.

    Article  CAS  Google Scholar 

  17. Silva LS, Rodriguez JF, Romero A, Borreguero AM, Carmona M, Sanchez P. Microencapsulation of PCMs with a styrene-methly methacrylate copolymer shell by suspension-like polymerization. Chem Eng J. 2010;157:216–22.

    Article  Google Scholar 

  18. Teng TP, Cheng CM, Cheng CP. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite. Appl Therm Eng. 2013;50:637–44.

    Article  CAS  Google Scholar 

  19. Cho JS, Kwon A, Cho CG. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym Sci. 2002;280:260–6.

    Article  CAS  Google Scholar 

  20. Zhang XX, Fan YF, Tao XM, Yick KL. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys. 2004;88:300–7.

    Article  CAS  Google Scholar 

  21. Fang GY, Li H, Yang F, Liu X, Wu SM. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153:217–21.

    Article  CAS  Google Scholar 

  22. Chio JK, Lee JG, Kim JH, Yang HS. Preparation of microcapsules containing phase change materials as heat transfer media by in situ polymerization. J Ind Eng Chem. 2001;7:358–62.

    Google Scholar 

  23. Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy. 2012;16:5603–16.

    Article  CAS  Google Scholar 

  24. Zhang T, Wang Y, Shi H, Yang WT. Fabrication and performances of new king microencapsulated phase change material based on stearic acid core and polycarbonate shell. Energy Convers Manag. 2012;64:1–7.

    Article  CAS  Google Scholar 

  25. Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007;11:1913–65.

    Article  CAS  Google Scholar 

  26. Cho K, Choi SH. Thermal characteristics of paraffin in a spherical capsule during freezing and melting processes. Int J Heat Mass Transf. 2000;43:3183–96.

    Article  CAS  Google Scholar 

  27. Wang X, Zhang YP, Xiao W, Zeng RL, Zhang QL, Di HF. Review on thermal performance of phase change energy storage building envelope. Chin Sci Bull. 2009;54:920–8.

    CAS  Google Scholar 

  28. Li H, Liu X, Fang G. Preparation and characteristics of n-nonadecane/cement composites as thermal energy storage materials in buildings. Energy Build. 2010;42:1661–5.

    Article  Google Scholar 

  29. Li B, Liu T, Hu L, Wang Y, Gao L. Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng. 2013;1:374–80.

    Article  CAS  Google Scholar 

  30. Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605.

    Article  CAS  Google Scholar 

  31. Wang WL, Yang XX, Fang YT, Ding J, Yan JY. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using beta-Aluminum nitride. Appl Energy. 2009;86:1196–200.

    Article  CAS  Google Scholar 

  32. Sun YJ, Wang SW, Xiao F, Gao D. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: a review. Energy Convers Manag. 2013;71:101–14.

    Article  Google Scholar 

  33. Sharma RK, Ganesan P, Tyagi VV. Long term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. J Therm Anal Calorim. 2016;124(3):1357–66.

    Article  CAS  Google Scholar 

  34. Tang B, Wang Y, Qiu M, Zhang S. A full-band sunlight-driven carbon nanotube/PEG/SiO2 composites for solar energy storage. Sol Energy Mater Sol Cells. 2014;123:7–12.

    Article  CAS  Google Scholar 

  35. Ince S, Seki Y, Ezan MA, Turgut A, Erek A. Thermal properties of myristic acid/graphite nanoplates composite phase change materials. Renew Energy. 2015;75:243–8.

    Article  CAS  Google Scholar 

  36. Hawes DW, Feldman D. Absorption of phase change materials in concrete. Sol Energy Mater Sol Cells. 1992;18(6):201–16.

    Google Scholar 

  37. Zeng J-L, Zhu F-R, Yu S-B, Xiao Z-L, Yan W-P, Zheng S-H, Zhang L, Sun LX, Cao Z. Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage. Sol Energy Mater Sol Cells. 2013;114:136–40.

    Article  CAS  Google Scholar 

  38. Yu SY, Wang XD, Wu DZ. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy. 2014;114:632–43.

    Article  CAS  Google Scholar 

  39. Zhang HZ, Wang XD. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mater Sol Cells. 2009;93:1366–76.

    Article  CAS  Google Scholar 

  40. Fang Y, Liu X, Liang X, Liu H, Gao X, Zhang Z. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage. Appl Energy. 2014;132:551–6.

    Article  CAS  Google Scholar 

  41. Jiang F, Wang X, Zhang YP. A new method to estimate optimal phase change material characteristic in a passive solar room. Energy Convers Manag. 2011;52:2437–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuhal Karagoz Genc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genc, M., Karagoz Genc, Z. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. J Therm Anal Calorim 131, 2373–2380 (2018). https://doi.org/10.1007/s10973-017-6781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6781-7

Keywords

Navigation