Skip to main content
Log in

Poly[3,3-bis(azidomethyl)oxetane]–2,4-dinitro-2,4-diazapentane

Thermal behavior and peculiarities of crystallization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Constructing phase diagrams for the mixtures of semicrystalline polymers and low molecular mass substances by DSC can meet with difficulties in the case of slow polymer crystallization. A problem of this kind is encountered for high-energy compositions poly[3,3-bis(azidomethyl)oxetane] (PBAMO)–2,4-dinitro-2,4-diazapentane (DNAP). In this study, the experimental phase diagram PBAMO–DNAP is constructed by an optical method, which makes it possible to visualize structural transformations. The kinetic studies by DSC and XRD reveal that 30–50 days of storing a homogenized PBAMO–DNAP mixture at room temperature are needed to attain stationary values of the crystallinity degree and heat of fusion. Even after that, the DSC method cannot deliver a solubility curve of DNAP in PBAMO, which is naturally generated by the optical method. This curve separates a domain of physical gels, effectively crosslinked by polymer crystallites and swollen with the plasticizer molecules, from a two-phase domain, in which the above gel reaches osmotic equilibrium with the pure plasticizer. It is also shown that the melting temperature of DNAP drops with growing the PBAMO content in the mixture, which is consistent with a decrease in the mean size of plasticizer crystals formed in polymer pores during the previous cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mizerovskii LN, Lebedeva TN, Pochivalov KV. The phase diagram of the high density polyethylene–m-xylene system. Polym Sci Ser A. 2015;57:257–60.

    Article  CAS  Google Scholar 

  2. Mizerovskii LN, Pochivalov KV, Kudryavtsev YV, Lebedeva TN, Golovanov RY, Antina LA. Phase diagrams semicrystalline polymer–liquid revisited: isotactic polypropylene–dibutyl phthalate and other systems. J Macromol Sci B. 2015;54:1001–17.

    Article  CAS  Google Scholar 

  3. Pochivalov KV, Kudryavtsev YV, Basko AV, Lebedeva TN, Golovanov RY. Phase diagrams of semicrystalline polymer–crystalline substances: polyolefins–1,2,4,5-tetrachlorobenzene. J Macromol Sci B. 2015;54:1427–37.

    Article  CAS  Google Scholar 

  4. Pochivalov KV, Vyalova AN, Golovanov RY, Mizerovskii LN. On the procedure of constructing phase diagrams of partially crystalline polymer–liquid systems. Russ J Appl Chem. 2012;85:153–5.

    Article  CAS  Google Scholar 

  5. Kim SS, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes. J Membr Sci. 1991;64:13–29.

    Article  CAS  Google Scholar 

  6. Smith P, Pennings AJ. Eutectic solidification of the pseudo binary system of polyethylene and 1,2,4,5-tetrachlorobenzene. J Mater Sci. 1976;11:1450–8.

    Article  CAS  Google Scholar 

  7. Smith P, Pennings AJ. Eutectic crystallization of pseudo binary systems of polyethylene and high melting diluents. Polymer. 1974;15:413–9.

    Article  CAS  Google Scholar 

  8. Hagström B. Mechanical properties and phase diagrams of alloys of high density polyethylene with some low molecular weight organic compounds. J Mater Sci. 1985;20:3906–16.

    Article  Google Scholar 

  9. Smith P, Koningsveld R, Schouteten CJH, Pennings AJ. The quasi ternary eutectic system polyethylene/hexamethylbenzene/adamantane. Br Polym J. 1980;12:215–20.

    Article  CAS  Google Scholar 

  10. Yoon J, Lesser AJ, McCarthy TJ. Locally anisotropic porous materials from polyethylene and crystallizable diluents. Macromolecules. 2009;42:8827–34.

    Article  CAS  Google Scholar 

  11. Lee HK, Myerson AS, Levon K. Nonequilibrium liquid–liquid phase separation in crystallizable polymer solutions. Macromolecules. 1992;25:4002–10.

    Article  CAS  Google Scholar 

  12. Alwattari AA, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. 6. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane structure. J Membr Sci. 1991;64:55–68.

    Article  CAS  Google Scholar 

  13. Matsuyama H, Maki T, Teramoto M, Asano K. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. J Membr Sci. 2002;204:323–8.

    Article  CAS  Google Scholar 

  14. Iijima M, Kosaka S, Hatakeyama T, Hatakeyama H. Phase transition of poly(vinyl alcohol) hydrogel filled with micro-fibrillated cellulose. J Therm Anal Calorim. 2016;123:1809–15.

    Article  CAS  Google Scholar 

  15. Deshpande VD, Jape SP. Morphology, crystallization and melting behaviour of poly(trimethylene terephthalate)/thermotropic liquid crystalline polymer blends. J Therm Anal Calorim. 2017;128:1479–93.

    Article  CAS  Google Scholar 

  16. Smith P, Pennings AJ. Eutectic solidification of the quasi binary system of isotactic polypropylene and pentaerythrityl tetrabromide. J Polym Sci Polym Phys Ed. 1977;15:523–40.

    Article  CAS  Google Scholar 

  17. Lin YK, Chen G, Yang Y, Wang XL. Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination. 2009;236:8–15.

    Article  CAS  Google Scholar 

  18. Cho IS, Kim JH, Kim SS. Thermally-induced phase separation mechanism study for the preparation of semicrystalline polymeric membranes. Korea Polym J. 1997;5:191–8.

    CAS  Google Scholar 

  19. Mizerovskii LN, Pochivalov KV, Afanas’eva VV. A semicrystalline polymer as a metastable microheterogeneous liquid. Polym Sci Ser A. 2010;52:973–84.

    Article  Google Scholar 

  20. Wang G, Ge Z, Luo Y. Synthesis and characterization of poly(3-azidomethyl-3-methyl oxetane) by the azidation of poly(3-mesyloxymethyl-3-methyl oxetane). Prop Explos Pyrotech. 2015;40:920–6.

    Article  CAS  Google Scholar 

  21. Tarasov AE, Estrin YI, Ol’khova OM, Lodygina VP, Badamshina ER. Cationic polymerization of 3-azidomethyl-3-methyloxetane in the presence of the boron fluoride etherate–ethylene glycol system. Polym Sci Ser B. 2010;52:144–9.

    Article  Google Scholar 

  22. Guo K, Luo Y, Chen J, Li X, Huang L. Synthesis of poly(3,3-bis-azidomethyl oxetane) via direct azidation of poly(3,3-bis-bromo oxetane). Prop Explos Pyrotech. 2010;35:423–4.

    Article  CAS  Google Scholar 

  23. Barbieri U, Polacco G, Paesano E, Massimi R. Low risk synthesis of energetic poly(3-azidomethyl-3-methyl oxetane) from tosylated precursors. Prop Explos Pyrotech. 2006;31:369–75.

    Article  CAS  Google Scholar 

  24. Murphy EA, Ntozakhe T, Murphy CJ, Fay JJ, Sperling LH, Manser GE. Characterization of poly(3,3-bisethoxymethyl oxetane) and poly(3,3-bisazidomethyl oxetane) and their block copolymers. J Appl Polym Sci. 1989;37:267–81.

    Article  CAS  Google Scholar 

  25. Zhang C, Li J, Luo Y-J. Synthesis and characterization of 3,3′-bisazidomethyl oxetane-3-azidomethyl-3′-methyl oxetane alternative block energetic thermoplastic elastomer. Prop Explos Pyrotech. 2012;37:235–40.

    Article  Google Scholar 

  26. Garaev IKh, Kostochko AV, Petrov AI, Ibragimov EN, Golubev AE. Synthesis of azidooxetane statistical polymers and copolymers. Russ J Gen Chem. 2016;86:1459–68.

    Article  CAS  Google Scholar 

  27. Garaev IKh, Kostochko AV, Petrov AI, Ibragimov EN, Golubev AE. Synthesis of azidourethane block copolymers. Russ J Gen Chem. 2016;86:1469–75.

    Article  CAS  Google Scholar 

  28. Kawamoto AM, Holanda JAS, Barbieri U, Polacco G, Keicher T, Krause H, Kaiser M. Synthesis and characterization of glycidyl azide-r-(3,3-bis(azidomethyl)oxetane) copolymers. Prop Explos Pyrotech. 2008;33:365–72.

    Article  CAS  Google Scholar 

  29. Kuzaev AI, Solomko SI, Ol’khova OM, Mirontseva GA, Tarasov AE, Tyapkina MN. Oligomerization of substituted oxetanes and parameters of their molecular heterogeneity. Russ J Appl Chem. 2007;80:1116–9.

    Article  CAS  Google Scholar 

  30. Zhang C, Luo Y-J, Jiao Q-J, Zhai B, Guo X-Y. Application of the BAMO-AMMO alternative block energetic thermoplastic elastomer in composite propellant. Prop Explos Pyrotech. 2014;39:689–93.

    Article  CAS  Google Scholar 

  31. Murphy CJ, Fay JJ, Vail EAM, Sperling LH. The influence of the equilibrium melting temperature on the supermolecular morphology of several polymers. J Appl Polym Sci. 1993;48:1321–9.

    Article  CAS  Google Scholar 

  32. Kubota N. Combustion of energetic azide polymers. J Propul Power. 1995;4:677–82.

    Article  Google Scholar 

  33. Hardenstine KE, Henderson GVS Jr, Sperling LH, Murphy CJ, Manser GE. Crystallization behavior of poly(3,3-bisethoxymethyl oxetane) and poly(3,3-bisazidomethyl oxetane). J Polym Sci Polym Phys Ed. 1985;23:1597–609.

    Article  CAS  Google Scholar 

  34. Tadokoro H. Structure and properties of crystalline polymers. Polymer. 1984;25:147–52.

    Article  CAS  Google Scholar 

  35. Takahashi Y, Osaki Y, Tadokoro H. Structures of three crystal modifications of poly(3,3-dimethyl oxacyclobutane). J Polym Sci Polym Phys Ed. 1980;18:1863–78.

    Article  CAS  Google Scholar 

  36. Wang G, Ge Z, Luo Y. Thermal decomposition kinetics of poly(3,3′-bisazidomethyl oxetane-3-azidomethyl-3′-methyl ozetane). J Therm Anal Calorim. 2015;122:1515–23.

    Article  CAS  Google Scholar 

  37. Li B, Zhao Y, Liu G, Li X, Luo Y. Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE. J Therm Anal Calorim. 2016;126:717–24.

    Article  CAS  Google Scholar 

  38. Perez E, Fatou JG, Bello A. Crystallization kinetics of the monoclinic modification of poly(3,3-dimethyl oxetane). Colloid Polym Sci. 1984;262:913–8.

    Article  CAS  Google Scholar 

  39. Kulagina GS, Badamshina ER, Pisarev SA, Chalykh AE. Crystallization kinetics of azide-containing oligooxetanediols. Struktura i dinamika molekulyarnykh sistem [Struct Dyn Mol Syst]. 2008;3A:22–7 (in Russian).

    Google Scholar 

  40. Guo K, Luo Y-J. Non-isothermal crystallization behaviors of PBAMO. Chin J Energ Mater. 2009;17:91–4.

    CAS  Google Scholar 

  41. Luo Y-J, Guo K. Studies on the non-isothermal crystallization behavior of aluminum nanopowder-filled poly(3,3-bis-azidomethyl oxetane). Prop Explos Pyrotech. 2010;35:159–93.

    Article  CAS  Google Scholar 

  42. Yang J, Gong X, Wang G. Compatibility and mechanical properties of BAMO–AMMO/DIANP composites: a molecular dynamics simulation. Comput Mater Sci. 2015;102:1–6.

    Article  CAS  Google Scholar 

  43. Pleshakov DV, Tretyakova VD. Study of the structure, properties, and plastification of oxetane copolymers. Boepripasy i vysokoenergeticheskie kondensirovannye sistemy [Ammunition and high-energy condensed systems]. 2011;2:92–9 (in Russian).

  44. Kulagina GS, Badamshina ER, Mikhailov YM, Pisarev SA, Khasbiullin RR, Chalykh AE. Phase equilibrium and interdiffusion in the oligo(3,3-bis(azidomethyl)oxetane)-oligo(3-methyl-3-azidomethyloxetane) system. Polym Sci Ser A. 2010;52:272–8.

    Article  Google Scholar 

  45. Kulagina GS, Ol’khova OM, Khasbiullin RR, Matveev VV, Mikhailov YM, Chalykh AE, Badamshina ER. Phase diagrams of blends of azide-containing polyoxetanes. Polym Sci Ser A. 2011;53:1061–8.

    Article  CAS  Google Scholar 

  46. Golubev AE, Pochivalov KV, Yurov MY, Lebedeva TN, Kudryavtsev YV, Zavadskii AE. Estimating the melting temperature of macromolecular poly-3, 3-bis-(azidomethyl) oxetane. Polym Sci Ser A. 2015;57:723–8.

    Article  CAS  Google Scholar 

  47. Zavadskii AE, Vavilova SY, Prorokova NP. X-ray analysis of polypropylene thread crystallization during spinning. Fibre Chem. 2015;47:79–84.

    Article  CAS  Google Scholar 

  48. Zavadskii AE. Analysis of the heterogeneity of dry cellulose fibers by small-angle X-ray diffraction. Fibre Chem. 2013;44:399–403.

    Article  CAS  Google Scholar 

  49. Wunderlich B. Macromolecular physics. Vol. 3. Crystal melting. New York: Academic Press; 1980.

    Google Scholar 

Download references

Acknowledgements

The study was carried out within the state assignment of the Ministry of Education and Science of Russia using the facilities of the shared equipment center “Upper Volga Regional Center for Physico-Chemical Research” and that of Ivanovo State University of Chemistry and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav V. Kudryavtsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pochivalov, K.V., Kudryavtsev, Y.V., Lebedeva, T.N. et al. Poly[3,3-bis(azidomethyl)oxetane]–2,4-dinitro-2,4-diazapentane. J Therm Anal Calorim 131, 2225–2233 (2018). https://doi.org/10.1007/s10973-017-6758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6758-6

Keywords

Navigation