Skip to main content
Log in

The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the effect of attack angle of triangular ribs, by using finite volume method, has been numerically studied in a two-dimensional microchannel. The cooling fluid is water/Ag nanofluid with volume fractions of 0–4% of nanoparticles, and nanoparticle diameters are 25, 50 and 75 nm. The nanofluid flow has been considered as laminar with Reynolds numbers of 5, 100 and 500. Also, the attack angles have been studied at the range of 30°–60°. In this study, the effects of variations in attack angles on triangular ribs, volume fraction of nanoparticles, nanoparticles diameter and Reynolds number have been investigated. The results indicate that using nanoparticles with smaller diameter improves heat transfer rate. Moreover, it is shown that the friction coefficient and pumping power are almost independent of nanoparticle diameter. However, increasing Reynolds number, pumping power enhancement becomes more important by increasing the volume fraction of nanoparticles. In low Reynolds numbers, the influence of ribs is approximately insignificant on the streamlines; it is very effective in high Reynolds numbers. The existence of rib on the direction of fluid motion causes asymmetrical velocity profile in the top section of the rib. Using triangular rib with higher attack angle can improve heat transfer significantly due to the high-velocity gradients and better mixing of fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Area (m2)

f :

Friction factor

C p :

Heat capacity (J kg−1 K−1)

H :

Microchannel height (μm)

Z :

Ribbed height (m)

k :

Thermal conductivity coefficient (Wm−1 K−1)

L 1 :

Overall microchannel length (m)

L 2 :

Inlet microchannel length (m)

L 3 :

Outlet microchannel length (m)

q″:

Surface heat flux (Wm−2)

W :

Ribbed length (m)

Nu :

Nusselt number

P :

Fluid pressure (Pa)

p :

Ribbed pitch (m)

Pp :

Pumping power (W)

Pe :

Peclet number

Pr :

Prandtl number

Re :

Reynolds number

T :

Temperature (K)

U, V :

Dimensionless velocity components in x, y directions

X, Y :

Cartesian dimensionless coordinates

u, v :

Velocity components in x, y directions (m s−1)

u c :

Inlet velocity in x directions (m s−1)

u s :

Brownian motion velocity (m s−1)

α :

Thermal diffusivity (m−2 s−1)

φ :

Nanoparticles volume fraction

K b :

Boltzmann constant (J K−1)

μ :

Dynamic viscosity (Pa s)

θ :

Dimensionless temperature and attack angles (Fig. 1)

Fig. 1
figure 1

Schematic of problem

ρ :

Density (kg m−3)

\(\upsilon\) :

Kinematics viscosity (m−2 s−1)

Δ:

Difference

c:

Cold

eff:

Effective

f:

Base fluid (distilled water)

h:

Hot

Ave:

Average

nf:

Nanofluid

S:

Solid nanoparticles

p:

Particle

In:

Inlet

Out:

Outlet

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP, editors. Developments and applications of Non-Newtonian flows, vol. FED-vol 231/MD 66. New York: ASME; 1995. p. 99–105.

    Google Scholar 

  2. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    Article  CAS  Google Scholar 

  3. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79(14):2252–54.

    Article  CAS  Google Scholar 

  4. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567–74.

    Article  CAS  Google Scholar 

  5. Patel HE, Das SK, Soundararajan T, Nair AS, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931–3.

    Article  CAS  Google Scholar 

  6. You SM, Kim JH, Kim KH. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett. 2003;83(14):3374–76.

    Article  CAS  Google Scholar 

  7. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125(1):527–35.

    Article  CAS  Google Scholar 

  8. Esfe MH, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121(3):1273–8.

    Article  Google Scholar 

  9. Esfe MH, Saedodin S, Yan WM, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124(1):455–60.

    Article  Google Scholar 

  10. Esfe MH, Hassani Ahangar MR, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Nanofluid using designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) MH experimental data. J Therm Anal Calorim. 2016;126(2):837–43.

  11. Siddique M, Khaled ARA, Abdulhafiz NI, Boukhary AY. Recent advances in heat transfer enhancements, a review report. Int J Chem Eng. 2010;2010:28.

    Article  Google Scholar 

  12. Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2015;7(11):1–11.

    Article  CAS  Google Scholar 

  13. Karimipour A, Alipour H, Akbari OA, Toghraie Semiromi D, Esfe MH. Studying the effect of indentation on flow parameters and slow heat transfer of water–silver nanofluid with varying volume fraction in a rectangular two-dimensional microchannel. Indian J Sci Technol. 2015;8(15):51707.

    Article  Google Scholar 

  14. Selvakumar P, Suresh S. Convective performance of CuO/water nanofluid in an electronic heat sink. Exp Therm Fluid Sci. 2012;40:57–63.

    Article  CAS  Google Scholar 

  15. Akbari OA, Karimipour A, Toghraie Semiromi D, Safaei MR, Alipour H, Goodarzi M, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comp. 2016;290:135–53.

  16. Tahir S, Mital M. Numerical investigation of laminar nanofluid developing flow and heat transfer in a circular channel. Appl Therm Eng. 2012;39:8–14.

    Article  CAS  Google Scholar 

  17. Almohammadi H, Nasiri Vatan Sh, Esmaeilzadeh E, Motezaker A, Nokhosteen A. Experimental investigation of convective heat transfer and pressure drop of/water nanofluid in laminar flow regime inside a circular tube. World Acad Sci Eng Technol. 2012;68:2208–13.

    Google Scholar 

  18. Abd A, Al-Jabair S, Sultan KH. Experimental investigation of heat transfer and flow of nano fluids in horizontal circular tube. World Acad Sci Eng Technol. 2012;61:138–45.

  19. Kim S, Yoo H, Kim C. Convective heat transfer of alumina nanofluids in laminar flows through a pipe at the thermal entrance regime. Korean J Chem Eng. 2012;29(10):1321–8.

    Article  CAS  Google Scholar 

  20. Davarnejad R, Barati S, Kooshki M. CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube. Springer Plus. 2013;2(1):192.

    Article  Google Scholar 

  21. Lelea D, Nisulescu C. The micro-tube heat transfer and fluid flow of water based nanofluid with viscous dissipation. Int Commun Heat Mass Transf. 2011;38:704–10.

    Article  CAS  Google Scholar 

  22. Yang YT, Lai FH. Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method. Int Commun Heat Mass Transf. 2011;38:607–14.

    Article  CAS  Google Scholar 

  23. Zhao CY, Lu TJ. Analysis of microchannel heat sinks for electronics cooling. Int J Heat Mass Transf. 2002;45:4857–69.

    Article  Google Scholar 

  24. Kim SJ, Kim D, Lee DY. On the local thermal equilibrium in microchannel heat sinks. Int J Heat Mass Transf. 2000;43:1735–48.

    Article  CAS  Google Scholar 

  25. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2:126–9.

    Article  Google Scholar 

  26. Tuckerman DB, Pease RFW. Ultrahigh thermal conductance microstructures for integrated circuits. In: IEEE proceedings of the 32nd electronic components conference. 1982. pp. 145–9.

  27. Yarmand H, Ahmadi G, Gharehkhani S, Kazi SN, Safaei MR, Sadat Alehashem M, Bakar Mahat A. Entropy generation due to turbulent flow of zirconia-water and three other different nanofluids in a square cross section tube with a constant surface heat flux. Entropy. 2014;16:6116–32.

    Article  Google Scholar 

  28. Karimipour A, Afrand M, Akbari M, Safaei MR. Simulation of fluid flow and heat transfer in the inclined enclosure. Int J Mech Aerosp Eng. 2012;6:86–91.

    Google Scholar 

  29. Goodarzi M, Safaei MR, Karimipour A, Hooman K, Dahari M, Kazi SN, Sadeghinezhad E. Comparison of the finite volume and lattice boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures. Abstr Appl Anal. 2014;2014. Article ID 762184.

  30. Safaei MR, Maghmoumi Y, Karimipour A. Numerical investigation of turbulence mixed convection heat transfer of water and drilling mud inside a square enclosure by finite volume method. In: International meeting of advances in thermofluids (IMAT 2011), Melaka, 2011, Malaysia.

  31. Hettiarachchi MHD, Golubovic M, Worek WM, Minkowycz WJ. Three-dimensional laminar slip-flow and heat transfer in a rectangular microchannel with constant wall temperature. Int J Heat Mass Transf. 2008;51:5088–96.

    Article  Google Scholar 

  32. Hussien AA, Abdullah MZ, Al-Nimr MA. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: theory and applications. Appl Energy. 2016;164:733–55.

    Article  CAS  Google Scholar 

  33. Brinkman HC. Viscosity of concentrated suspensions and solution. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  34. Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK. A micro-convection model for thermal conductivity of nanofluids. Pramana J Phys. 2005;65(5):863–9.

    Article  CAS  Google Scholar 

  35. Vanaki ShM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39.

    Article  CAS  Google Scholar 

  36. Nimmagadda R, Venkatasubbaiah K. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3 + Ag/water). Eur J Mech B Fluids. 2015;52:19–27.

    Article  Google Scholar 

  37. Manca O, Nardini S, Ricci D. A numerical study of nanofluid forced convection in ribbed channels. Appl Therm Eng. 2012;37:280–92.

    Article  CAS  Google Scholar 

  38. Ebrahimi A, Roohi E, Kheradmand S. Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators. Appl Therm Eng. 2015;78:576–83.

    Article  Google Scholar 

  39. Arani AAA, Akbari OA, Safaei MR, Marzban A, Alrashed AAAA, Ahmadi GR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.

    Article  CAS  Google Scholar 

  40. Heydari M, Toghraie D, Akbari OA. The effect of semi-attached and offset mid-truncated ribs and water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm Sci Eng Prog. 2017;2:140–50.

    Article  Google Scholar 

  41. Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of Non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Physica E. 2017;93:167–78.

    Article  CAS  Google Scholar 

  42. Khodabandeh E, Rahbari A, Rosen MA, Najafian Ashrafi Z, Akbari OA, Anvari AM. Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace. Energy Convers Manag. 2017;148:43–56.

    Article  CAS  Google Scholar 

  43. Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Physica E. 2017;93:179–89.

    Article  CAS  Google Scholar 

  44. Safaei MR, Rahmanian B, Goodarzi M. Numerical study of laminar mixed convection heat transfer of power-law Non-Newtonian fluids in square enclosures by finite volume method. Int J Phys Sci. 2011;6(33):7456–70.

    CAS  Google Scholar 

  45. Safaei MR, Goshayshi HR, Saeedi Razavi B, Goodarzi M. Numerical investigation of laminar and turbulent mixed convection in a shallow water-filled enclosure by various turbulence methods. Sci Res Essays. 2011;6(22):4826–38.

    Google Scholar 

  46. Aminossadati SM, Raisi A, Ghasemi B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int J Non Linear Mech. 2011;46:1373–82.

    Article  Google Scholar 

  47. Rimbault B, Nguyen CT, Galanis N. Experimental investigation of CuO-water nanofluid flow and heat transfer inside a microchannel heat sink. Int J Therm Sci. 2014;84:275–92.

    Article  CAS  Google Scholar 

  48. Akbari OA, Safaei MR, Goodarzi M, Akbar NS, Zarringhalam M, Ahmadi Sheikh Shabani G, Dahari MA. Modified two-phase mixture model of nanofluid flow and heat transfer in 3-D curved microtube. Adv Powder Technol. 2016;27:2175–85.

    Article  CAS  Google Scholar 

  49. Akbari OA, Toghraie Semiromi D, Karimipour A, Marzban A, Ahmadi Sheikh Shabani GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in Non-Newtonian nanofluid. J Phys E Low Dimens Syst Nanostruct. 2017;86:68–75.

    Article  CAS  Google Scholar 

  50. Safaei MR, Goodarzi M, Akbari OA, Safdari Shadloo M, Dahari M. Performance evaluation of nanofluids in an inclined ribbed microchannel for electronics cooling application. “Electronics Cooling” Intech: ISBN 978-953-51-4672-8.

  51. Faridzadeh MR, Semiromi DT, Niroomand A. Analysis of laminar mixed convection in an inclined square lid-driven cavity with a nanofluid by using an artificial neural network. Heat Transf Res. 2014;45:361–90.

  52. Sheikholeslami M, Ganji DD. Impact of electric field on nanofluid forced convection heat transfer with considering variable properties. J Mol Liq. 2017;229:566–73.

    Article  CAS  Google Scholar 

  53. Behnampour A, Akbari OA, Safaei MR, Ghavami M, Marzban A, Ahmadi Sheikh Shabani Gh, Zarringhalam M, Mashayekhi R. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E. 2017;91:15–31.

    Article  CAS  Google Scholar 

  54. Akbari OA, Hassanzadeh Afrouzi H, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22.

    Article  CAS  Google Scholar 

  55. Hosseinipour E, Zeinali Heris S, Shanbedi M. Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube. J Therm Anal Calorim. 2016;124(1):205–14.

    Article  CAS  Google Scholar 

  56. Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F. The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq. 2017;236:254–65.

    Article  CAS  Google Scholar 

  57. Hatami M. Numerical study of nanofluids natural convection in a rectangular cavity including heated fins. J Mol Liq. 2017;233:1–8.

    Article  CAS  Google Scholar 

  58. Mahdavi M, Sharifpur M, Meyer JP. Implementation of diffusion and electrostatic forces to produce a new slip velocity in the multiphase approach to nanofluids. Powder Technol. 2017;307:153–62.

    Article  CAS  Google Scholar 

  59. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  Google Scholar 

  60. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):1–15.

    Article  Google Scholar 

  61. Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO nanofluid in a sinusoidal channel with a porous medium. Physica E. 2017;87:134–40.

    Article  CAS  Google Scholar 

  62. Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Physica E. 2017;85:103–8.

    Article  CAS  Google Scholar 

  63. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi attached rib. Adv Mech Eng. 2016;8(4):1–25.

    Article  CAS  Google Scholar 

  64. Alipour H, Karimipour A, Safaei MR, Toghraie Semiromi D, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver–water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E. 2017;88:60–76.

    Article  CAS  Google Scholar 

  65. Ahmad R, Mustafa M. Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet. J Mol Liq. 2016;220:635–41.

    Article  CAS  Google Scholar 

  66. Toghraie D, Mokhtari M, Afrand M. Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannel. Physica E. 2016;84:152–61.

    Article  CAS  Google Scholar 

  67. Selvakumar RD, Dhinakaran S. Nanofluid flow and heat transfer around a circular cylinder: a study on effects of uncertainties in effective properties. J Mol Liq. 2016;223:572–88.

    Article  Google Scholar 

  68. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.

    Article  CAS  Google Scholar 

  69. Milani Shirvan K, Mamourian M, Mirzakhanlari S, Ellahi R. Two phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. J Mol Liq. 2016;220:888–901.

    Article  CAS  Google Scholar 

  70. Moshizi SA, Malvandi A. Different modes of nanoparticle migration at mixed convection of Al2O3–water nanofluid inside a vertical microannulus in the presence of heat generation/absorption. J Therm Anal Calorim. 2016;126(3):1947–62.

    Article  CAS  Google Scholar 

  71. Shamshirband Sh, Malvandi A, Karimipour A, Goodarzi M, Afrand M, Petković D, Dahari M, Mahmoodian N. Performance investigation of micro- and nano-sized particle erosion in a 90° elbow using an ANFIS model. Powder Technol. 2015;284:336–43.

    Article  CAS  Google Scholar 

  72. Vanaki SM, Mohammed HA. Numerical study of nanofluid forced convection flow in channels using different shaped transverse ribs. Int Commun Heat Mass Transf. 2015;67:176–88.

    Article  CAS  Google Scholar 

  73. Rashidi MM, Nasiri M, Safdari Shadloo M, Yang Z. Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches. Heat Transfer Eng. 2017;38(9):853–66.

    Article  CAS  Google Scholar 

  74. Togun H, Safaei MR, Sadri R, Kazi SN, Badarudin A, Hooman K, Sadeghinezhad E. Heat transfer to turbulent and laminar Cu/water flow over a backward-facing step. Appl Math Comp. 2014;239:153–70.

    Article  Google Scholar 

  75. Afrand M, Karimipour A, Ahmadi Nadooshan A, Akbari M. The variations of heat transfer and slip velocity of FMWNT water nano-fluid along the microchannel in the lack and presence of a magnetic field. Physica E. 2016;84:474–81.

    Article  CAS  Google Scholar 

  76. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Physica E. 2017;86:146–53.

    Article  CAS  Google Scholar 

  77. Safaei MR, Ahmadi G, Goodarzi MS, Safdari Shadloo M, Goshayeshi HR, Dahari M. Heat transfer and pressure drop in fully developed turbulent flow of graphene nanoplatelets–silver/water nanofluids. Fluids. 2016;1(3):1–20.

    Google Scholar 

  78. Goodarzi M, Kherbeet ASh, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Dahari M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transf. 2016;76:16–23.

    Article  CAS  Google Scholar 

  79. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51.

    Article  CAS  Google Scholar 

  80. Safaei MR, Safdari Shadloo M, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, Kazi SN. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8(10):1–14.

    Article  CAS  Google Scholar 

  81. Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enchantment in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf Part A. 2014;66:1321–40.

    Article  CAS  Google Scholar 

  82. Khodabandeh E, Pourramezan M, Pakravan MH. Effects of excess air and preheating on the flow pattern and efficiency of the radiative section of a fired heater. Appl Therm Eng. 2016;105:537–48.

    Article  Google Scholar 

  83. Khodabandeh E, Ghaderi M, Afzalabadi A, Rouboa A, Salarifard A. Parametric study of heat transfer in an electric arc furnace and cooling system. Appl Therm Eng. 2017;123:1190–200.

    Article  Google Scholar 

  84. Pourfattah F, Motamedian M, Sheikhzadeh G, Toghraie D, Akbari OA. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of water/Al2O3 nanofluid in a tube. Int J Mech Sci. 2017;000–132:1–11.

    Google Scholar 

  85. Ahmadi GhR, Toghraie D, Akbari OA. Efficiency improvement of a steam power plant through solar repowering. Int J Exergy. 2017;22(2):158–82.

    Article  Google Scholar 

  86. Akbari OA, Marzban A, Ahmadi GhR. Evaluation of supply boiler repowering of an existing natural gas-fired steam power plant. Appl Therm Eng. 2017;124:897–910.

    Article  Google Scholar 

  87. Ahmadi GhR, Toghraie D. Energy and exergy analysis of Montazeri steam power plant in Iran. Renew Sustain Energy Rev. 2016;56:454–63.

    Article  Google Scholar 

  88. Ahmadi GhR, Toghraie D, Azimian A, Akbari OA. Evaluation of synchronous execution of full repowering and solar assisting in a 200 MW steam power plant. A case study. Appl Therm Eng. 2017;112:111–23.

    Article  Google Scholar 

  89. Ahmadi GhR, Toghraie D. Parallel feed water heating repowering of a 200 MW steam power plant. J Power Technol. 2015;95(4):288–301.

    Google Scholar 

  90. Ahmadi GhR, Toghraie D, Akbari OA. Solar parallel feed water heating repowering of a steam power plant: a case study in Iran. Renew Sustainable Energy Rev. 2017;77:474–85.

    Article  Google Scholar 

  91. Ahmadi Gh, Akbari OA, Zarringhalam M. Energy and exergy analyses of partial repowering of a natural gas-fired steam power plant. Int J Exergy. 2017;23(2):149–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Safaei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, A., Akbari, O.A., Safaei, M.R. et al. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim 131, 2893–2912 (2018). https://doi.org/10.1007/s10973-017-6746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6746-x

Keywords

Navigation