Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 337–354 | Cite as

CO2 adsorption on activated carbon prepared from mangosteen peel

Study by adsorption calorimetry
Article

Abstract

In this work, four series of activated carbon (AC) were prepared from mangosteen peel by chemical activation. The effect of the ratio of the activating agent/char using H3PO4 and KOH and the effect of temperature were correlated with the CO2 adsorption capacity. The results show that KOH AC had a higher CO2 adsorption capacity of around 19.0 mmol g−1, while those activated with H3PO4 had CO2 adsorption capacity values around 13.5 mmol g−1. In this investigation, the adsorption of CO2 was monitored by adsorption microcalorimetry, and it was found that the samples with smaller micropores generated higher enthalpy values. The plots indicate homogeneity or heterogeneity in addition to the acidity or basicity of the surface.

Graphical abstract

CO2 adsorption isotherms at 25 °C up 50 bar for all samples prepared in this research. (a) MPP and Differential enthalpies of adsorption of CO2 on the samples prepared from MP: (b) MPK.

Keywords

Adsorption calorimetry Mangosteen peel Activated carbons CO2 storage 

Notes

Acknowledgements

The authors wish to thank the framework agreement between the National University of Colombia and the Andes (Bogotá, Colombia). The authors also wish to thank the multinational project EraNet-LAC ELAC2014/BEE-0367, BioFESS (Universitat Hohenheim, Germany, project leader) and Colciencias Contract No. 217-2016 (Colombia) for funding to carry out this investigation.

References

  1. 1.
    Sedov IA, Muhametzyanov TA, Solomonov BN. A procedure for calibration of differential scanning calorimeters. Thermochim Acta. 2016;639:10–3.CrossRefGoogle Scholar
  2. 2.
    Zimmermann W, Keller JU. A new calorimeter for simultaneous measurement of isotherms and heats of adsorption. Thermochim Acta. 2003;405:31–41.CrossRefGoogle Scholar
  3. 3.
    Wadsö I. Neither calorimeters nor calorimetrists are what they used to be. Thermochim Acta. 1997;300:1–5.CrossRefGoogle Scholar
  4. 4.
    Rouquerol J, Zielenkiewicz W. Suggested practice for classification of calorimeters. Thermochim Acta. 1986;109:121–37.CrossRefGoogle Scholar
  5. 5.
    Kusano K. Micro conduction calorimeters to measure enthalpies of vaporization. Thermochim Acta. 1985;88:109–20.CrossRefGoogle Scholar
  6. 6.
    Elsayed AM, Askalany AA, Shea AD, Dakkama HJ, Mahmoud S, Al-Dadah R, Kaialy W. A state of the art of required techniques for employing activated carbon in renewable energy powered adsorption applications. Renew Sust Energy Rev. 2017;79:503–19.CrossRefGoogle Scholar
  7. 7.
    El-Hendawy AA, Samra SE, Girgis BS. Adsorption characteristics of activated carbons obtained from corncobs. Colloid Surf A. 2001;180:209–21.CrossRefGoogle Scholar
  8. 8.
    Dai XD, Liu XM, Zhao G, Qian L, Qiao K, Yan ZF. Treatment of activated carbon for methane storage. Asia Pac J Chem Eng. 2008;3:292–7.CrossRefGoogle Scholar
  9. 9.
    Dai XD, Liu XM, Qian L, Yan ZF, Zhang J. A novel method to synthesize super-activated carbon for natural gas adsorptive storage. J Porous Mater. 2006;13:399–405.CrossRefGoogle Scholar
  10. 10.
    Burchell T, Rogers M. Low pressure of natural gas for vehicular applications. SAE. 2000;. doi: 10.4271/2000-01-2205.Google Scholar
  11. 11.
    Lozano-Castello D, Alcaniz-Monge J, de la Casa-Lillo MA, Cazorla-Amoros D, Linares-Solano A. Advances in the study of methane storage in porous carbonaceous materials. Fuel. 2002;81:1777–803.CrossRefGoogle Scholar
  12. 12.
    Adamson AW. Physical chemistry of surface. London: Interscience Publishers Inc.; 1960.Google Scholar
  13. 13.
    Garcia-Cuello V, Moreno-Piraján JC, Giraldo-Gutiérrez L, Sapag K, Zgrablich G. A new microcalorimeter of adsorption for the determination of differential enthalpies. Microporous Mesoporous Mater. 2009;120:239–45.CrossRefGoogle Scholar
  14. 14.
    Ruthven DM. Principles of adsorption and adsorption processes. New York: Wiley; 1984.Google Scholar
  15. 15.
    Myers AL, Monson PA. Physical adsorption of gases: the case for absolute adsorption as the basis for thermodynamic analysis. Adsorption. 2014;20:591–622.CrossRefGoogle Scholar
  16. 16.
    Myers AL. Thermodynamics of adsorption in porous materials. AIChE J. 2012;48:145–64.CrossRefGoogle Scholar
  17. 17.
    Brunauer S. The adsorption of gases and vapors, vol. I. Berlin: Springer; 1945.Google Scholar
  18. 18.
    Hill TL. Statistical mechanics of adsorption. IX. Adsorption thermodynamics and solution thermodynamics. J Chem Phys. 1949;17:520–34.CrossRefGoogle Scholar
  19. 19.
    Hill TL. Statistical mechanics of adsorption. IX. Adsorption thermodynamics and solution thermodynamics. J Chem Phys. 1950;18:246–54.CrossRefGoogle Scholar
  20. 20.
    Everett DH. The thermodynamics of adsorption. Part III. Analysis and discussion of experimental data. Trans Faraday Soc. 1950;46:957–73.CrossRefGoogle Scholar
  21. 21.
    Hill TL, Emmett PH, Joyner LG. Calculation of thermodynamic functions of adsorbed molecules from adsorption isotherm measurements: nitrogen on graphon. J Am Chem Soc. 1951;73:5102–10.CrossRefGoogle Scholar
  22. 22.
    Valenzuela DP, Myers AL. Adsorption equilibrium data handbook. Englewood Cliffs: Prentice-Hall; 1989.Google Scholar
  23. 23.
    Biloe S, Goetz V, Mauran S. Characterization of adsorbant composite block for methane storage. Carbon. 2001;39:1653–62.CrossRefGoogle Scholar
  24. 24.
    Lozano-Castello D, Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A. Preparation of activated carbons from Spanish anthracite. I. Activation by KOH. Carbon. 2001;39:741–9.CrossRefGoogle Scholar
  25. 25.
    Ahmad MA, Alrozi R. Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology. Chem Eng J. 2010;165:883–90.CrossRefGoogle Scholar
  26. 26.
    Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem. 2007;103:839–46.CrossRefGoogle Scholar
  27. 27.
    Zien R, Suhaili R, Earnestly F, Indrawati Munaf E. Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell. J Hazard Mater. 2010;162:43–50.Google Scholar
  28. 28.
    Chen Y, Huang B, Huang M, Cai B. On the preparation and characterization of activated carbon from mangosteen Shell. J Taiwan Inst Chem Eng. 2011;42:837–42.CrossRefGoogle Scholar
  29. 29.
    Cychosz KA, Guo X, Fan W, Cimino R, Gor GY, Tsapatsis M, Neimark AV, Thommes M. Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. Langmuir. 2012;28(34):12647–54.CrossRefGoogle Scholar
  30. 30.
    Gedrich K, Senkovska I, Klein N, Stoeck U, Henschel A, Lohe MR, Baburin IA, Mueller U, Kaskel S. A highly porous metal-organic framework with open nickel sites. Angew Chem Int Ed. 2010;49:8489–92.CrossRefGoogle Scholar
  31. 31.
    Seki K. Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes. Chem Commun. 2001;16:1496–7.CrossRefGoogle Scholar
  32. 32.
    Ma SQ, Sun DF, Simmons JM, Collier CD, Yuan DQ, Zhou HC. Metal-Organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc. 2008;130:1012–6.CrossRefGoogle Scholar
  33. 33.
    Ma SQ, Zhou HC. Gas storage in porous metal-organic frameworks for clean energy applications. Chem Commun. 2010;46:44–53.CrossRefGoogle Scholar
  34. 34.
    Li B, Wen HM, Zhou W, Xu JQ, Chen B. Porous metal-organic frameworks: promising materials for methane storage. Chem. 2016;1:557–80.CrossRefGoogle Scholar
  35. 35.
    Beckner M, Dailly A. A pilot study of activated carbon and metal–organic frameworks for methane storage. Appl Energy. 2016;162:506–14.CrossRefGoogle Scholar
  36. 36.
    Wang H, Zhu QL, Zou R, Xu Q. Metal-organic frameworks for energy applications. Chem. 2017;2:52–80.CrossRefGoogle Scholar
  37. 37.
    Himeno S, Komatsu T, Fujita S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J Chem Eng Data. 2005;50:369–76.CrossRefGoogle Scholar
  38. 38.
    Casas N, Schell J, Pini R, Mazzotti M. Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption. 2012;18:143–61.CrossRefGoogle Scholar
  39. 39.
    Bae Y-S, Mulfort KL, Frost H, Ryan P, Punnathanam S, Broadbelt LJ, Hupp JT, Snurr RQ. Separation of CO2 from CH4 using mixed-ligand metal–organic frameworks. Langmuir. 2008;24:8592–8.CrossRefGoogle Scholar
  40. 40.
    Neimark AV, Lin Y, Ravikovitch PI, Thommes M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon. 2009;47:1617–28.CrossRefGoogle Scholar
  41. 41.
    Rodríguez-Reinoso F, Garrido J, Martín-Martínez JM, Molina-Sabio M, Torregrosa R. The combined use of different approaches in the characterization of microporous carbons. Carbon. 1989;27:23–32.CrossRefGoogle Scholar
  42. 42.
    Rouquerol J, Llewellyn P, Rouquerol F. Is BET equation applicable to microporous adsorbents? Stud Surf Sci Catal. 2007;160:49–56.CrossRefGoogle Scholar
  43. 43.
    Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1936;407:309–13.Google Scholar
  44. 44.
    Lippens BC, de Boer JH. Studies on pore systems in catalysts: V. The t-method. J Catal. 1965;4:319–23.CrossRefGoogle Scholar
  45. 45.
    Liu Q, Guan JS, Li J, Li C. SO2 removal from flue gas by activated semi-cokes 2. Effects of physical structures and chemical properties on SO2 removal activity. Carbon. 2003;41:2225–30.CrossRefGoogle Scholar
  46. 46.
    Fiuza RA, de Jesus Neto RM, Correia LB, Andrade HMC. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. J Environ Manage. 2015;161:198–205.CrossRefGoogle Scholar
  47. 47.
    Luo J, Liu YF, Jiang CF, Chu W, Jie W, Xie HP. Experimental and modeling study of methane adsorption on activated carbon derived from anthracite. J Chem Eng Data. 2011;56:4919–26.CrossRefGoogle Scholar
  48. 48.
    Luo J, Liu Y, Sun W, Jiang C, Xie H, Chu W. Influence of structural parameters on methane adsorption over activated carbon: evaluation by using D-A model. Fuel. 2014;123:241–7.CrossRefGoogle Scholar
  49. 49.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;. doi: 10.1515/pac-2014-1117.Google Scholar
  50. 50.
    Do DD. Pure component adsorption in microporous solids, chapter 4. In: World Scientific Publishing Co, editor. Adsorption analysis: equilibria and kinetics. London: Imperial College Press; 1998.Google Scholar
  51. 51.
    Dubinin MM, Astakhov VA. Description of adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure. Adv Chem Ser. 1970;102:69–85.CrossRefGoogle Scholar
  52. 52.
    Dubinin MM, Astakhov VA. Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents 1. Carbon adsorbents. Izv Akad Nauk SSSR Ser Khim. 1971;1:5–11.Google Scholar
  53. 53.
    Moreno-Piraján JC, García-Cuello VS, Giraldo L. Characterization of mordenite-supported Pd, Pt, and Ir determined by CO adsorption microcalorimetry and the dehydrogenation reaction of C3 alkanes. Top Catal. 2011;54:146–52.CrossRefGoogle Scholar
  54. 54.
    Moreno-Piraján JC, Bastidas-Barranco MJ, Giraldo L. Preparation of activated carbons for storage of methane and its study by adsorption calorimetry. J Therm Anal Calorim. 2017;. doi: 10.1007/s10973-017-6132-8.Google Scholar
  55. 55.
    Correia LB, Fiuza RA, Jr. RC, Andrade HMC. CO2 capture on activated carbons derived from mango fruit (Mangifera indica L.) seed shells. J Therm Anal Calorim. 2017;. doi: 10.1007/s10973-017-6542-7.Google Scholar
  56. 56.
    Bazan A, Nowicki P, Póilrolniczak P, Pietrzak R. Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops. J Therm Anal Calorim. 2016;125:1199–204.CrossRefGoogle Scholar
  57. 57.
    Nowicki P. Effect of heat treatment on the physicochemical properties of nitrogen-enriched activated carbons. J Therm Anal Calorim. 2016;125:1017–24.CrossRefGoogle Scholar
  58. 58.
    Rodríguez-Estupiñán P, Giraldo L, Moreno-Piraján JC, A microcalorimetric study of methane adsorption on activated carbons obtained from mangosteen peel at different conditions. J Therm Anal Calorim. 2017 (Aceppted for publication).Google Scholar
  59. 59.
    Bansal RC, Goyal M. Activated Carbon Adsorption. New York: CRC Press; 2005.CrossRefGoogle Scholar
  60. 60.
    Mattson JS, Mark HB. Activated carbon: surface chemistry and adsorption from solution. New York: Marcel Dekker; 1971.Google Scholar
  61. 61.
    Hu HU, Ruckenstein E. Application of Dubinin–Astakhov equation to CO2 adsorption on single-walled carbon nanotubes. Chem Phys Lett. 2006;425:306–10.CrossRefGoogle Scholar
  62. 62.
    Aaron D, Tsouris C. Separation of CO2 from flue gas: a review. Sep Sci Technol. 2005;48:321–48.CrossRefGoogle Scholar
  63. 63.
    Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD. Advances in CO2 capture technology—the US Department of Energy’s carbon sequestration program. Int J Greenh Gas Control. 2008;2:9–20.CrossRefGoogle Scholar
  64. 64.
    Sevilla M, Fuertes AB. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci. 2011;4:1765–71.CrossRefGoogle Scholar
  65. 65.
    Hu X, Radosz M, Cychosz KA, Thommes M. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol. 2011;45:7068–74.CrossRefGoogle Scholar
  66. 66.
    Schell J, Casas N, Pini R, Mazzotti M. Pure and binary adsorption of CO2, H2, and N2 on activated carbon. Adsorption. 2012;18:49–65.CrossRefGoogle Scholar
  67. 67.
    Belin T, Epron F. Characterization methods of carbon nanotubes: a review. Mater Sci Eng B Solid. 2005;119:105–18.CrossRefGoogle Scholar
  68. 68.
    Labus K, Gryglewicz S, Machnikowski J. Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity. Fuel. 2014;118:9–15.CrossRefGoogle Scholar
  69. 69.
    Giraldo L, Bastidas-Barranco M, Moreno-Piraján JC. Adsorption calorimetry: energetic characterization of the surface of mesoporous silicas and their adsorption capacity of non-linear chain alcohols. Colloid Surf A. 2016;496:100–13.CrossRefGoogle Scholar
  70. 70.
    Li W, Peng J, Zhang L, Xia H, Li N, Yang K, Zhu X. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. J Ind Crops Prod. 2008;28:73–8.CrossRefGoogle Scholar
  71. 71.
    Devi AS, Latif PA, Tham YJ, Taufiq-Ya YH. Physical characterization of activated carbon derived from mangosteen peel. Asian J Chem. 2012;24:579–83.Google Scholar
  72. 72.
    Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol. 2008;99:6809–16.CrossRefGoogle Scholar
  73. 73.
    Williams PT, Besler S. The pyrolysis of rice husk in a thermogravimetric analyzer and static batch reactor. Fuel. 1993;72:151–9.CrossRefGoogle Scholar
  74. 74.
    Ahmadpour A, Do DD. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon. 1997;35:1723–32.CrossRefGoogle Scholar
  75. 75.
    Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem Eng J. 2008;144(1):42–50.CrossRefGoogle Scholar
  76. 76.
    Girgis BS, Ishak MF. Activated carbon from cotton stalks by impregnation with phosphoric acid. Mater Lett. 1999;39:107–14.CrossRefGoogle Scholar
  77. 77.
    Guo J, Lua AC. Textural and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Mater Chem Phys. 2003;80:114–9.CrossRefGoogle Scholar
  78. 78.
    Girgis BS, Yunis SS, Soliman AM. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Mater Lett. 2002;57:164–72.CrossRefGoogle Scholar
  79. 79.
    Adinata D, Daud WMAW, Aroua MK. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour Technol. 2007;98:145–9.CrossRefGoogle Scholar
  80. 80.
    Yu-Peng G, Shao-Fang Y, Jing-Zhe Z, Zi-Chen W, Mu-Yu Z. Preparation of activated carbon with high specific surface area from rice husks. Chem J Chin U. 2000;21:335–8.Google Scholar
  81. 81.
    Cao Q, Xie KC, Lv Y-K, Bao WR. Process effects on activated carbon with large specific surface area from corn cob. Bioresour Technol. 2006;97:110–5.CrossRefGoogle Scholar
  82. 82.
    Kan Y, Yue Q, Li D, Wu Y, Gao B. Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal. J Taiwan Inst Chem Eng. 2017;71:494–500.CrossRefGoogle Scholar
  83. 83.
    Suárez-García F, Martínez-Alonso A, Tascón JMD. Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon. 2004;42:1419–26.CrossRefGoogle Scholar
  84. 84.
    Liu H, Wang X, Zhai G, Zhang J, Zhang C, Bao N, Cheng C. Preparation of activated carbon from lotus stalks with the mixture of phosphoric acid and pentaerythritol impregnation and its application for Ni(II) sorption. Chem Eng J. 2012;209:155–62.CrossRefGoogle Scholar
  85. 85.
    Benaddi H, Legras D, Rouzaud JN, Beguin F. Influence of the atmosphere in the chemical activation of wood by phosphoric acid. Carbon. 1998;36:306–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Departamento de Química, Grupo de Investigación en Sólidos Porosos y Calorimetría, Facultad de CienciasUniversidad de los AndesBogotáColombia

Personalised recommendations