Skip to main content
Log in

Combustion kinetics and structural features of bituminous coal before and after modification process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Coal modification process is becoming popular to be used to upgrade coal quality. The upgraded coal (semi-coke) can be utilized in ironmaking process. Thermogravimetry and DAEM were used to analyze the combustion kinetics of bituminous coal before and after modification in this study. To understand the factors influencing the combustion process, various advanced techniques including X-ray diffraction analysis, Raman spectroscopy and Fourier transform infrared spectroscopy were adopted to investigate the structural features of the combusted samples. The results showed that the coal aromaticity increases significantly with the side-chains and chain length reduced, while the matrix structure transforms to graphite-like structure after the modification process. Those structural changes lead to the decrease in coal reactivity, thus weakening the coal combustion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li KJ, Rita K, Zhang JL, et al. The evolution of structural order, microstructure and mineral matter of metallurgical coke in a blast furnace: a review. Fuel. 2014;133:194–215.

    Article  CAS  Google Scholar 

  2. Xu R, Zhang J, Wang G, et al. Combustion characteristics and kinetic analysis of blended coal of upgraded low rank coal and bituminous coal injected into blast furnace. J Chongqing Univ. 2015;38(2):17–20.

    Google Scholar 

  3. Cong XS, Zong ZM, Zhou Y, et al. Isolation and identification of 3-ethyl-8-methyl-2,3-dihydro-1H-cyclopenta[a] chrysene from Shengli lignite. Energy Fuels. 2014;28(10):6694–7.

    Article  CAS  Google Scholar 

  4. Odeh AO. Comparative study of the aromaticity of the coal structure during the char formation process under both conventional and advanced analytical techniques. Energy Fuels. 2015;29(4):2676–84.

    Article  CAS  Google Scholar 

  5. Cong XS, Zong ZM, Wei ZH, et al. Enrichment and identification of arylhopanes from Shengli lignite. Energy Fuels. 2014;28:6745–8.

    Article  CAS  Google Scholar 

  6. Sonobe T, Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel. 2008;87:414–21.

    Article  CAS  Google Scholar 

  7. Cai J, Liu R. Weibull mixture model for modeling non-isothermal kinetics thermally simulated solid–state reactions: application to simulated and real kinetic conversion data. J Phys Chem. 2007;111:10681–6.

    Article  CAS  Google Scholar 

  8. Wang GW, Zhang JL, Shao JG, et al. Characterisation and model fitting kinetic analysis of coal/biomass co-combustion. Thermochim Acta. 2014;591:68–74.

    Article  CAS  Google Scholar 

  9. Mani T, Murugan P, Mahinpey N. Determination of distributed activation energy kinetic parameters using annealing optimization method for non-isothermal pyrolysis of lignin. Ind Eng Chem Res. 2009;48:1464–7.

    Article  CAS  Google Scholar 

  10. Franklin RE. The interpretation of diffuse X-ray diagrams of carbon. Acta Crystallogr. 1950;3(2):107–21.

    Article  CAS  Google Scholar 

  11. Klug HP, Alexander LE. X-ray diffraction procedures: for polycrystalline and amorphous materials, vol. 1. New York: Wiley-Interscience; 1974.

    Google Scholar 

  12. Guesta A, Dhamelincourt P, Laureyns J, et al. Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J Mater Chem. 1998;8:2875–84.

    Article  Google Scholar 

  13. Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to various coals. Carbon. 2001;39(12):1821–33.

    Article  CAS  Google Scholar 

  14. Ibarra J, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process. Org Geochem. 1996;24(6):725–35.

    Article  CAS  Google Scholar 

  15. Ibarra J, Moliner R, Bonet AJ. FT-ir investigation on char formation during the early stages of coal pyrolysis. Fuel. 1994;73(6):918–24.

    Article  CAS  Google Scholar 

  16. Wang HY, Zhang JL, Wang GW, et al. Characteristics and kinetic analysis of co-combustion of brown coal and anthracite. J Therm Anal Calorim. 2016;126(2):447–54.

    Article  CAS  Google Scholar 

  17. Solomon PR, Carangelo RM. FTIR analaysis of coal. 1. Techniques and determination of hydroxyl concentrations. Fuel. 1982;61(7):663–9.

    Article  CAS  Google Scholar 

  18. Li KJ, Khanna Rita, Zhang JL, et al. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energy Fuels. 2015;29:7178–89.

    Article  CAS  Google Scholar 

  19. Ouyang DG, Luo AZ, Zhu SH, et al. Study on combustion property of coal blend. Ind Heat. 2009;38(1):17–20.

    CAS  Google Scholar 

  20. Gao ZY, Fang LJ, Zhou J, et al. Research on the combustion performance of blended coal in thermal-balance. Power Eng. 2002;22(3):1764–7.

    Google Scholar 

  21. He XJ, Zhang JL, Qi CL, et al. Kinetic analysis and effects of catalysts on combustion characteristic of pulverized coal. Iron Steel. 2012;47(7):74–9.

    Google Scholar 

  22. Huang FX, Yang W. Study on thermal analysis on combustion features of pulverized coal. Coal Eng. 2011;24:103–6.

    Google Scholar 

  23. Zhang Y, Kang X, Tan J, et al. Influence of calcination and acidification on structural characterization of anyang anthracites. Energy Fuels. 2013;27(11):7191–7.

    Article  CAS  Google Scholar 

  24. Dun W, Guijian L, Ruoyu S, et al. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction. Energy Fuels. 2013;27(10):5823–30.

    Article  Google Scholar 

  25. Cancado L, Takai K, Enoki T, et al. Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon. 2008;46(2):272–5.

    Article  CAS  Google Scholar 

  26. Manoj B, Kunjomana A. Structural characterization of selected Indian coals by X-ray diffraction and spectroscopic techniques. Trends Appl Sci Res. 2012;7(6):434–44.

    Article  CAS  Google Scholar 

  27. Brown JK, Hirsch PB. Recent infra-red and X-ray studies of coal. Nature. 1955;175:229–33.

    Article  CAS  Google Scholar 

  28. José VI, Edgar M, Rafael M. FTIR study of the evolution of coal structure during the coalification process. Org Geochem. 1996;24:725–35.

    Article  Google Scholar 

  29. Yen TF, Wu WH, Chilingar GV. A study of the structure of petroleum asphaltenes and related substances by infrared spectroscopy. Energy Sources. 1984;7(3):203–35.

    Article  CAS  Google Scholar 

  30. Krevelen DW. Coal: typology, physics, chemistry, constitution. Amsterdam: Elsevier Science; 1993.

    Google Scholar 

  31. Lin Vien D, Colthup N, Fateley B, et al. The handbook of infrared and raman characteristic frequencies of organic molecules. Amsterdam: Elsevier; 1991.

    Google Scholar 

  32. Zerda TW, John A, Chmura K. Raman studies of coals. Fuel. 1981;60:375–84.

    Article  CAS  Google Scholar 

  33. Eiman MA, Fatma K, Trevo JM, et al. Size exclusion chromatography for the unambiguous detection of aliphatics in fractions from petroleum vacuum residues, coal liquids, and standard materials, in the presence of aromatics. Energy Fuels. 2006;20:1165–70.

    Article  Google Scholar 

  34. Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon. 2005;42:1731–6.

    Article  Google Scholar 

  35. Li X, Hayashi J, Li C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel. 2006;85(12):1700–7.

    Article  CAS  Google Scholar 

  36. Li KJ, Zhang JL, Liu ZJ, et al. Gasification of graphite and coke in carbon–carbon dioxide–sodium or potassium carbonate systems. Ind Eng Chem Res. 2014;53(14):5737–48.

    Article  CAS  Google Scholar 

  37. Quirico E, Rouzaud J-N, Bonal L, et al. Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. Spectrochim Acta Part A. 2005;61(10):2368–77.

    Article  Google Scholar 

  38. Beyssac O, Goffé B, Petitet J-P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta Part A. 2003;59(10):2267–76.

    Article  Google Scholar 

  39. Zhang SQ. Coal and coal chemistry. Beijing: Chemical Industry Press; 2013.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Technology R&D Program (No. 2011BAC01B02), National Basic Research Program of China (973 Program) (No. 2012CB720401), Natural Science Foundation of China and Baosteel under Grant (No. 51134008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Ning, X., Zhang, J. et al. Combustion kinetics and structural features of bituminous coal before and after modification process. J Therm Anal Calorim 131, 983–992 (2018). https://doi.org/10.1007/s10973-017-6709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6709-2

Keywords

Navigation