Skip to main content
Log in

The effect of Nb and Ni addition on crystallization behavior of amorphous–nanocrystalline Fe–Cr–B–Si alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization behavior of amorphous Fe–Cr–B–Si alloys in the presence of Ni and Nb elements was the goal of this study. In this regard, four different amorphous–nanocrystalline Fe40Cr20Si15B15M10 (M=Fe, Nb, Ni, Ni0.5Nb0.5) alloys were prepared using mechanical alloying technique up to 20 h. Based on the achieved results, in contrast to Fe50Cr20Si15B15 alloy, the amorphous phase can be successfully prepared in the presence of Ni and Nb in composition. Although the crystallization mechanism of prepared amorphous phase in different alloys was the same, the Fe40Cr20Si15B15Nb10 alloy showed higher thermal stability in comparison with other samples. The crystallization activation energy of this amorphous alloy was estimated about 410 kJ mol−1 which was much higher than Fe40Cr20Si15B15Ni10 (195.5 kJ mol−1) and Fe40Cr20Si15B15Ni5Nb5 (360 kJ mol−1) samples. The calculated values of Avrami exponent (1.5 < n < 2.2) indicated that the crystallization process in different alloying systems is the same and to be governed by a three-dimensional diffusion-controlled growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Inoue A, Hashimoto K. Amorphous and nanocrystalline materials: preparation, properties, and applications. New York: Springer; 2001.

    Book  Google Scholar 

  2. Movahedi B, Enayati MH, Wong CC. Study on nanocrystallization and amorphization in F–Cr–Mo–B–P–Si–C system during mechanical alloying. Mater Sci Eng B. 2010;172:50–4.

    Article  CAS  Google Scholar 

  3. Sunol JJ, Clavaguera N, Cavaguera-Mora MT. Comparison of Fe–Ni–P–Si alloys prepared by ball milling. J Non Cryst Solids. 2001;287:114–9.

    Article  CAS  Google Scholar 

  4. Chen QJ, Fan HB, Shen J, Sun JF, Lu ZP. Critical cooling rate and thermal stability of Fe–Co–Zr–Y–Cr–Mo–B amorphous alloy. J Alloy Compd. 2006;407:125–8.

    Article  CAS  Google Scholar 

  5. Hossain MK, Ferdous J, Haque MM, Abdul Hakim AKM. Development of nanostructure formation of Fe73.5Cu1Nb3Si13.5B9 alloy from amorphous state on heat treatment. World J Nano Sci Eng. 2015;5:107–14.

    Article  Google Scholar 

  6. Lovas A, Kiss LF, Varga B, Kamasa P, Balogh I, Bakonyi I. Survey of magnetic properties during and after amorphous-nanocrystalline transformation. Journal de Physique. 1998;8:291–8.

    CAS  Google Scholar 

  7. Inoue A, Wang XM. Bulk amorphous C20(Fe–C–Si) alloys with small amounts of B and their crystallized structure and mechanical properties. Acta Mater. 2000;48:1383–95.

    Article  CAS  Google Scholar 

  8. Hammam MAS, Abdel-Rahim MA, Hafiz MM, Abu-Sehly AA. New combination of non-isothermal kinetics-revealing methods. J Therm Anal Calorim. 2017;128:1391–405.

    Article  CAS  Google Scholar 

  9. Lesz S, Kwapuliński P, Nabiałek M, Zackiewicz P, Hawelek L. Thermal stability, crystallization and magnetic properties of Fe–Co-based metallic glasses. J Therm Anal Calorim. 2016;125:1143–9.

    Article  CAS  Google Scholar 

  10. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  11. Kissinger HE. Reaction kinetics in thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  12. Prajapati SR, Kasyap S, Patel AT, Pratap A. Non-isothermal crystallization kinetics of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calorim. 2015;8:1–13.

    Google Scholar 

  13. Stoica M, Li R, Yavari AR, Vaughan G, Eckert J, Steenberge N, Romera DR. Thermal stability and magnetic properties of FeCoBSiNb bulk metallic glasses. J Alloy Compd. 2010;504:123–8.

    Article  Google Scholar 

  14. Jung HY, Stoica M, Seonghoon Y, Kim DH, Eckert J. Crystallization kinetics of Fe76.5− xC6.0Si3.3B5.5P8.7Cux (x = 0, 0.5, 1 at.%) bulk amorphous alloy. Metall Mater Trans A. 2014;46:2415–21.

    Article  Google Scholar 

  15. Piloyan GO, Ryabchikov ID, Novikova OS. Determination of activation energies of chemical reactions by differential thermal analysis. Nature. 1966;212:1229–302.

    Article  CAS  Google Scholar 

  16. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  17. Šesták J. Applicability of DTA to the study of crystallization kinetics of glasses. Phys Chem Glasses. 1974;15:137–40.

    Google Scholar 

  18. Ligero RA, Vazques J, Villares P, Jimenez-Garay R. A study of the crystallization kinetics of some Cu–As–Te glasses. J Mater Sci. 1991;26:211–5.

    Article  CAS  Google Scholar 

  19. Henderson DW. Experimental analysis of non-isothermal transformations involving nucleation and growth. J Therm Anal. 1979;15:325–31.

    Article  CAS  Google Scholar 

  20. Wang HR, Min GH, Gao YL, Ye YF, Deng YF. Crystallization products of amorphous Zr–Cu–Ni alloy. J Alloy Compd. 2003;354:124–8.

    Article  CAS  Google Scholar 

  21. Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions a variant on the Ozawa-Flynn-Wall method. Thermochimal Acta. 1996;285:309–23.

    Article  CAS  Google Scholar 

  22. Pratap A, Lad KN, Rao TLS, Majmudar P, Saxena NS. Kinetics of crystallization of amorphous Cu50Ti50 alloy. J Non-Cryst Solids. 2004;345–346:178–81.

    Article  Google Scholar 

  23. Flynn JH, Wall LA, Quick A. Direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  24. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  25. Ozawa T. Kinetics of non-isothermal crystallization. Polymers. 1971;12:150–8.

    Article  CAS  Google Scholar 

  26. Ranganathan S, Heimendahl MV. The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci. 1981;16:2401.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Tavoosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavoosi, M. The effect of Nb and Ni addition on crystallization behavior of amorphous–nanocrystalline Fe–Cr–B–Si alloys. J Therm Anal Calorim 131, 917–924 (2018). https://doi.org/10.1007/s10973-017-6658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6658-9

Keywords

Navigation