Skip to main content

Standard molar enthalpy of formation of vanillin

Abstract

Specific energy of combustion of vanillin was determined using the bomb calorimeter BIC 100 with high degree of thermal protection from environment impact. The standard deviation of mean for energy equivalent was 0.01%. Based on the specific energy of combustion −(25,072.1 ± 7.4) J g−1, the standard molar enthalpy of combustion and standard molar enthalpy of formation for vanillin in the crystalline state at 298.15 K were calculated to be −(3815.9 ± 1.1) and −(475.5 ± 1.5) kJ mol−1, respectively. Standard molar enthalpy of formation of vanillin in the gaseous state was determined to be −(375.8 ± 2.1) kJ mol−1 from ab initio calculations using density functional theory and G3 methods. The enthalpy of sublimation of vanillin at 298.15 K, determined as difference between standard molar enthalpies of formation of vanillin in crystalline and gaseous states, was found to be 100 ± 3 kJ mol−1.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Shen C, Li W, Zhou CR. Investigation on molar heat capacity, standard molar enthalpy of combustion for guaiacol and acetyl guaiacol ester. Chin J Chem Eng. 2016;24(2):1772–8.

    CAS  Article  Google Scholar 

  2. Emel′yanenko VN, Yermalayeu AV, Voges M, Held C, Sadowski G, Verevkin SP. Thermodynamics of a model biological reaction: a comprehensive combined experimental and theoretical study. Fluid Phase Equilib. 2016;422:99–110.

    Article  Google Scholar 

  3. Freitas VLS, Lima ACMO, Sapei E, Ribeiro da Silva MDMC. Comprehensive thermophysical and thermochemical studies of vanillyl alcohol. J Chem Thermodyn. 2016;102:287–92.

    CAS  Article  Google Scholar 

  4. Velavan R, Sureshkumar P, Sivakumar K, Natarajan S. Vanillin-I. Acta Crystallogr. 1995;C51:1131–3.

    CAS  Google Scholar 

  5. Puca GI. Salicylic acid. In: Zefirov NS, editor. Chemical encyclopedia, vol. 4. Moscow: Big russian encyclopedia; 1995. p. 288–9 (in Russian).

  6. Krivonos PV, Dikun TI, Serko EL. Creation of National standard of combustion energy unit—Joule. Metrol Instrum Mak. 2013;1:3–9 (in Russian).

    Google Scholar 

  7. Syshchanka AF, Rusalsky DP. Metrological provision of temperature measurement: status and problems. Device Methods Measurements. 2011;1:98–103 (in Russian).

    Google Scholar 

  8. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data. 1982;11(Suppl. 2):2–65.

    Google Scholar 

  9. Korchagina EN. Metrological characteristics of K-1 and K-3 reference benzoic acids. Meas Tech. 2001;44:1138–42.

    CAS  Article  Google Scholar 

  10. Mentado-Morales J, Hernández-Sánchez E, Regalado-Méndez A, Peralta-Reyes E. An isoperibolic combustion calorimeter developed to measure the enthalpy of combustion of organic compounds. J Therm Anal Calorim. 2017;3:2307–14.

    Article  Google Scholar 

  11. Hubbard WN, Scott DW, Waddington G. Reduction to standard states (at 25°C) of bomb calorimetric data for compounds of carbon, hydrogen, oxygen and sulphur. J Phys Chem. 1954;58:152–62.

    CAS  Article  Google Scholar 

  12. Alexandrov YJ, Oleynic BN, Usvyatseva TR. [Reduction to standard thermodynamic states of heat combustion for C, H, O organic compounds]. Trudy metrologicheskih institutov SSSR, vol. 189. Moscow-Leningrad: Izd. Standartov; 1971. p. 155–77 (in Russian).

    Google Scholar 

  13. Pinto SS, Diogo HP, Minas da Piedade ME. Enthalpy of formation of monoclinic 2-hydroxybenzoic acid. J Chem Thermodyn. 2003;35:177–88.

    CAS  Article  Google Scholar 

  14. Sabbah R, Le THD. Étude thermodynamique des trois isomères de l’acide hydroxybenzoique. Can J Chem. 1993;71(9):1378–83.

    CAS  Article  Google Scholar 

  15. Nagano Y, Sugimoto T. Micro-combustion calorimetry aiming at 1 mg samples. J Therm Anal Calorim. 1999;57:867–74.

    CAS  Article  Google Scholar 

  16. Mentado J, Mendoza E. Calibration and testing of an isoperibolic micro-combustion calorimeter developed to measure the enthalpy of combustion of organic compounds containing C, H, O and N. J Chem Thermodyn. 2013;59:209–13.

    CAS  Article  Google Scholar 

  17. Colomina M, Jimenez P, Roux MV, Turrion C. Thermochemical properties of o-, m- and p-hydroxybenzoic acids. J Calorim Anal Therm. 1980;11:1–6.

    Google Scholar 

  18. Camarillo EA, Flores H. Construction, calibration and testing of a micro-combustion calorimeter. J Chem Thermodyn. 2006;38:1269–73.

    CAS  Article  Google Scholar 

  19. Sakiyama M, Kiyobayashi T. Micro-bomb combustion calorimeter equipped with an electric heater for aiding complete combustion. J Chem Thermodyn. 2000;32:269–79.

    CAS  Article  Google Scholar 

  20. Diogo HP, Minas da Piedade ME. A micro-combustion calorimeter suitable for samples of mass 10 mg to 50 mg. Application to solid compounds of C, H, and O, and of C, H, O, and N. J Chem Thermodyn. 1995;27:197–206.

    CAS  Article  Google Scholar 

  21. Sabbah R, Coten M. Utilisation du microcalorimetre CRMT en calorimetrie de combustion. Thermochim Acta. 1981;49:307–17.

    CAS  Article  Google Scholar 

  22. Varfolomeev MA, Abaidullina DI, Solomonov BN, Verevkin SP, Emel’yanenko VN. Pairwise substitution effects, inter- and intramolecular hydrogen bonds in methoxyphenols and dimethoxybenzenes. Thermochemistry, calorimetry, and first-principles calculations. J Phys Chem B. 2010;114(49):16503–16.

    CAS  Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, revision B.04. Pittsburgh: Gaussian Inc; 2003.

    Google Scholar 

  24. Shaykhislamov DS, Khursan SL, Monakov YB. Application of composite methods G3, G3MP2B3 and CBS-Q for calculation of hydrocarbonaceous molecules, radicals and anions of a complex structure. Izv Vyssh Uchebn Zaved, Khim Khim Tekhnol. 2006;49(5):37–41 (in Russian).

    Google Scholar 

  25. Wieser ME. Atomic weights of the elements 2011 (IUPAC technical report). Pure Appl Chem. 2013;85:1047–78.

    CAS  Article  Google Scholar 

  26. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere Publishing Corp; 1979.

    Google Scholar 

  27. Li X, Jiang JH, Gu HW, Xiao SX, Li CH, Ye LJ, Li X, Li QG, Xu F, Sun LX. Calorimetric determination of the standard molar enthalpies of formation of o-vanillin and trimethoprim. J Therm Anal Calorim. 2015;119:721–6.

    CAS  Article  Google Scholar 

  28. Pedley JB. Thermochemical data of organic compounds, TRC data series. College Station: Thermodynamics Research Center (TRC); 1994.

    Google Scholar 

  29. Acree W Jr., Chickos JS. Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2010. J Phys Chem Ref Data. 2010;39(4):1–942.

    Article  Google Scholar 

  30. Verevkin SP, Kozlova SA. Di-hydroxybenzenes: catechol, resorcinol, and hydroquinone: enthalpies of phase transitions revisited. Thermochim Acta. 2008;471(1–2):33–42.

    CAS  Article  Google Scholar 

  31. Ribeiro Da Silva MDMC, Ribeiro Da Silva MAV, Pilcher G. Enthalpies of combustion of the three trihydroxybenzenes and of 3-methoxycatechol and 4-nitrocatechol. J Chem Thermodyn. 1986;18:295–300.

    CAS  Article  Google Scholar 

  32. Bernardes CES, Minas da Piedade ME. Energetics of the O–H bond and of intramolecular hydrogen bonding in HOC6H4C(O)Y (Y=H, CH3, CH2CH=CH2, C≡CH, CH2F, NH2, NHCH3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds. J Phys Chem A. 2008;112(40):10029–39.

    CAS  Article  Google Scholar 

  33. Ribeiro da Silva MDMC, Araújo NRM. Thermochemical studies on salicylaldehyde and salicylamide. J Chem Thermodyn. 2007;39(10):1372–6.

    CAS  Article  Google Scholar 

  34. Cox JD. The heats of combustion of phenol and the three cresols. Pure Appl Chem. 1961;2:125–8.

    CAS  Article  Google Scholar 

  35. Richard LS, Bernardes CES, Diogo HP, Leal JP, Minas da Piedade ME. Energetics of cresols and of methylphenoxyl radicals. J Phys Chem A. 2007;111(35):8741–8.

    CAS  Article  Google Scholar 

  36. Matos MAR, Miranda MS, Morais VMF. Thermochemical study of the methoxy- and dimethoxyphenol isomers. J Chem Eng Data. 2003;48(3):669–79.

    CAS  Article  Google Scholar 

  37. Matos MAR, Miranda MS, Morais VMF. Calorimetric and theoretical determination of standard enthalpies of formation of dimethoxy- and trimethoxybenzene isomers. J Phys Chem A. 2000;104(40):9260–5.

    CAS  Article  Google Scholar 

  38. Verevkin SP, Schick C. Determination of vapor pressures, enthalpies of sublimation, and enthalpies of fusion of benzenetriols. Thermochim Acta. 2004;415(1–2):35–42.

    CAS  Article  Google Scholar 

  39. Slayden SW, Liebman JF. Thermochemistry of phenol and related arenols. In: Rappoport Z, editor. The chemistry of phenols. Chichester: Wiley; 2003. p. 223–58.

    Chapter  Google Scholar 

  40. Roux MV, Temprado M, Chickos JS, Nagano Y. Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data. 2008;37(4):1855–996.

    CAS  Article  Google Scholar 

  41. Tabernero A, del Valle EMM, Galán MA. An empirical analysis of the solubility of pharmaceuticals in supercritical carbon dioxide using sublimation enthalpies. Ind Eng Chem Res. 2013;52(51):18447–57.

    CAS  Article  Google Scholar 

  42. Serpinskii VV, Voitkevich SA, Lyuboshits NY. Determination of saturated vapour pressure for some odoriferous substancies. Zh Fiz Khim. 1953;27(7):1032–8 (in Russian).

    CAS  Google Scholar 

  43. Jones AH. Sublimation pressure data for organic compounds. J Chem Eng Data. 1960;5(2):196–200.

    CAS  Article  Google Scholar 

  44. Temprado M, Roux MV, Chickos JS. Some thermophysical properties of several solid aldehydes. J Therm Anal Calorim. 2008;94(1):257–62.

    CAS  Article  Google Scholar 

  45. Stephenson RM, Malanowski S. Handbook of the thermodynamics of organic compounds. New York: Elsevier Science Publishing Co; 1987.

    Book  Google Scholar 

  46. Hoskovec M, Grygarová D, Cvacka J, Streinz L, Zima J, Verevkin SP, Koutek B. Determining the vapour pressures of plant volatiles from gas chromatographic retention data. J Chromatogr A. 2005;1083(1–2):161–72.

    CAS  Article  Google Scholar 

  47. Škerget M, Čretnik L, Knez Ž, Škrinjar M. Influence of the aromatic ring substituents on phase equilibria of vanillins in binary systems with CO2. Fluid Phase Equilib. 2005;231(1):11–9.

    Article  Google Scholar 

  48. Simões RG, Agapito F, Diogo HP, Minas da Piedade ME. Enthalpy of formation of anisole: implications for the controversy on the O–H bond dissociation enthalpy in phenol. J Phys Chem A. 2014;118(46):11026–32.

    Article  Google Scholar 

  49. Lee M-J, Lien P-J, Huang W-K. Solid–liquid equilibria for binary mixtures containing cresols, ethylenediamine, and anisole. Ind Eng Chem Res. 1994;33(11):2853–8.

    CAS  Article  Google Scholar 

  50. Goates JR, Boerio-Goates J, Goates SR, Ott JB. (Solid + liquid) phase equilibria for (N,N-dimethylacetamide + tetrachloromethane): enthalpies of melting of pure components and enthalpies for formation of molecular addition compounds from phase equilibria. J Chem Thermodyn. 1987;19(1):103–7.

    CAS  Article  Google Scholar 

  51. Chickos JS. A protocol for correcting experimental fusion enthalpies to 298.15 K and it’s application in indirect measurements of sublimation enthalpy at 298.15 K. Thermochim Acta. 1998;313(1):19–26.

    CAS  Article  Google Scholar 

  52. Oliver GD, Eaton M, Huffman HM. The heat capacity, heat of fusion and entropy of benzene. J Am Chem Soc. 1948;70:1502–5.

    CAS  Article  Google Scholar 

  53. Ambrose D, Connett JE, Green JHS, Hales JL, Head AJ, Martin JF. Thermodynamic properties of organic oxygen compounds. 42. Physical and thermodynamic properties of benzaldehyde. J Chem Thermodyn. 1975;7:1143–57.

    CAS  Article  Google Scholar 

  54. Ribeiro Da Silva MAV, Ferreira AIMCL. Experimantal standard molar enthalpies of formation of some methylbenzenediol isomers. J Chem Thermodyn. 2009;41:1096–103.

    CAS  Article  Google Scholar 

  55. NIST Chemistry Webbook. NIST standard reference database number 69. Gaithersburg: National Institute of Standards and Technology. http://webbook.nist.gov.

  56. Swietoslawski W, Starczewska H. Influence of certain corrections on the results of measurements of the heat of combustion of organic substances. Bull Int Acad Pol Sci Lett Cl Med. 1928;1928:85–97.

    Google Scholar 

  57. Lebedeva ND, Raydnenko VL, Gutner NM, Kiseleva NN. Enthalpies of formation for polysubstituted benzenes. Thermodyn Organ Soedin. 1976;5:12–6 (in Russian).

    Google Scholar 

  58. Manzoni-Ansidei R, Storto T. Experimentelle beitrage zum problem der chelatringbildung. IX. Thermochemische untersuchungen an einigen methoxybenzaldehyden. Atti R Acad Italia Rend Classe Sci Fis Mat Nat. 1940;1:465–9.

    CAS  Google Scholar 

  59. Cox JD, Pilcher G. Thermochemistry of organic and organometallic compounds. New York: Academic Press; 1970.

    Google Scholar 

  60. Domalski ES, Hearing ED. Estimation of thermodynamic properties of organic compounds. J Phys Chem Ref Data. 1993;22(4):805–1159.

    CAS  Article  Google Scholar 

  61. Zavitsas AA, Rogers DW, Matsunaga N. Heats of formation of organic compounds by simple calculations. J Org Chem. 2010;75:6502–15.

    CAS  Article  Google Scholar 

  62. Růžička K, Fulem M, Červinka C. Recommended sublimation pressure and enthalpy of benzene. J Chem Thermodyn. 2014;68:40–7.

    Article  Google Scholar 

  63. Ribeiro da Silva MDMC, Gonçalves MV, Monte MJS. Thermodynamic study on hydroxybenzaldehyde derivatives: 3- and 4-hydroxybenzaldehyde isomers and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. J Chem Thermodyn. 2010;42(4):472–7.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Marina Krivova for analysis English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Maksimuk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maksimuk, Y., Ponomarev, D., Sushkova, A. et al. Standard molar enthalpy of formation of vanillin. J Therm Anal Calorim 131, 1721–1733 (2018). https://doi.org/10.1007/s10973-017-6651-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6651-3

Keywords

  • Vanillin
  • Bomb calorimeter
  • Energy of combustion
  • Enthalpy of formation