A comparative study on thermal conductivity of TiO2/ethylene glycol–water and TiO2/propylene glycol–water nanofluids


In the present study, TiO2 nanoparticles (NPs) have been synthesized by the sol–gel method. As synthesized, TiO2 NPs have been characterized by X-ray diffraction, high-resolution scanning electron microscopy (HR-SEM), Fourier transformation of Raman spectroscopy and UV–visible spectroscopic techniques. The different percentage of low mass concentration of TiO2 NPs have been dispersed into the mixture of ethylene glycol (EG) + water (W) and propylene glycol (PG) + water (W) in two different volume ratios (20:80 and 70:30%). The thermal and ultrasonic properties were analysed on the prepared nanofluids at the various temperature ranges from 298.15 to 323.15 K with an interval of 5 K. The 20:80% EG/W-based fluid of TiO2 nanofluids possess a higher thermal conductivity enhancement than other TiO2 nanofluids (20:80% PG/W, 70:30% EG/W and 70:30% PG/W). These results revealed that the thermal conductivity of nanofluids depends not only on nanoparticle concentrations and temperature, but also in the types of base fluids. The inter-particle interaction of nanoparticles and cluster formation have been analysed through the variation in ultrasonic parameters. Also, the thermal conductivities of nanofluids have been calculated through ultrasonic method and the results were compared with the flash laser technique method, obtained experimentally.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Therm Anal Calorim. doi:10.1007/s10973-014-4328-8.

  2. 2.

    Huminic G, Huminic A. Application of nanofluids in heat exchangers. Renew Sustain Energy Rev. 2012;16:5625–38.

    CAS  Article  Google Scholar 

  3. 3.

    Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Commun Heat Mass Transf. 2013;41:41–6.

    CAS  Article  Google Scholar 

  4. 4.

    Pastoriza-Gallego MJ, Lugo L, Legido JL, Pineiro MM. Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids. Appl Phys. 2011;110:0143090–9.

    Article  Google Scholar 

  5. 5.

    Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Heat Mass Transf. 2009;52:4675–82.

    CAS  Article  Google Scholar 

  6. 6.

    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. San Francisco: ASME Int Mechanical engineering Congress and Exposition; 1995.

    Google Scholar 

  7. 7.

    Safaei MR. A modified two-phase mixture model of nanofluid flow and heat transfer in a 3D curved microtube evaluation of repowering options for Montazeri power plant view project. Adv Powder Technol. 2016;27:2175–85.

    Article  Google Scholar 

  8. 8.

    Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf. 2017;66:1321–40.

    Article  Google Scholar 

  9. 9.

    Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO nanofluid in a sinusoidal channel with a porous medium. Phys E Low Dimens Syst Nanostruct. 2017;87:134–40.

    CAS  Article  Google Scholar 

  10. 10.

    Hemmat Esfe M, Akbari, Toghraie D, Karimipour A, Afran M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf Res. 2014;45:409–32.

    Article  Google Scholar 

  11. 11.

    Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Phys E Low Dimens Syst Nanostruct. 2017;86:68–75.

    CAS  Article  Google Scholar 

  12. 12.

    Akbari OA, Toghraie D, Karimipour A, Safaei MR, Goodarzi M, Goodarzi M, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Math Comput. 2016;290:135–53.

    Google Scholar 

  13. 13.

    Sridhara V, Satapathy LN. Effect of nanoparticles on thermal properties enhancement in different oils—a review. Solid State Mater Sci. 2014;40:399–424.

    Google Scholar 

  14. 14.

    Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Commun Heat Mass Transf. 2016;75:262–9.

    CAS  Article  Google Scholar 

  15. 15.

    Esfahani MA, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of silica/water–ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. Mol Liq. 2017;232:105–12.

    CAS  Article  Google Scholar 

  16. 16.

    Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO –TiO2/EG hybrid nanofluid. Therm Anal Calorim. 2016;125:527–35.

    CAS  Article  Google Scholar 

  17. 17.

    Hemmat Esfe M, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. Commun Heat Mass Transf. 2016;74:125–8.

    CAS  Article  Google Scholar 

  18. 18.

    Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. Therm Anal Calorim. 2014;18:287–94.

    Article  Google Scholar 

  19. 19.

    Brinkman HC. The viscosity of concentration suspensions and solution. Chem Phys. 1952;20:571–81.

    CAS  Google Scholar 

  20. 20.

    Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids. 2017;61:25–32.

    Article  Google Scholar 

  21. 21.

    Aghanajafi A, Mehmandoust B, Toghraie D. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Phys E Low Dimens Syst Nanostruct. 2017;85:103–8.

    CAS  Article  Google Scholar 

  22. 22.

    Noorian H, Toghraie D, Azimian AR. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transf. 2014;50:105–13.

    CAS  Article  Google Scholar 

  23. 23.

    Hemmat Esfe M, Hassani Ahangar RH, Rejvani M, Toghraie D, Hadi Hajmohammad M. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–8.

    CAS  Article  Google Scholar 

  24. 24.

    Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Thermal and Fluid Sci. 2016;76:342–51.

    CAS  Article  Google Scholar 

  25. 25.

    Hemmat Esfe M, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20–80)–SAE40 hybrid nano-lubricant. Commun Heat Mass Transf. 2016;76:133–41.

    CAS  Article  Google Scholar 

  26. 26.

    Hemmat Esfe M, Afrand M, Toghraie M, Rostamian H. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Commun Heat Mass Transf. 2016;76:202–10.

    CAS  Article  Google Scholar 

  27. 27.

    Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. Magn Magn Mater. 2016;417:243–51.

    CAS  Article  Google Scholar 

  28. 28.

    Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids. 2017;61:25–32.

    Article  Google Scholar 

  29. 29.

    Yiamsawas T, Mahian O, Dalkillic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5.

    CAS  Article  Google Scholar 

  30. 30.

    Nabeel Rashin M, Hemalatha J. A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. Mol Liq. 2014;197:257–62.

    CAS  Article  Google Scholar 

  31. 31.

    Kavitha T, Rajendran A, Durairajan A. Preparation and characterization of nanosized TiO2 powder by sol–gel prsecipitation route. Emerg Technol Adv Eng. 2013;3:636–9.

    Google Scholar 

  32. 32.

    Nachit W, Touhtouh S, Ramzi Z, Zbair M, Eddia A, Rguiti M, Bouchikhi A, Hajjaji A, Benkhouja K. Synthesis of nanosized TiO2 powder by sol gel method at low temperature. Mol Cryst Liq Cryst. 2016;627:170–5.

    CAS  Article  Google Scholar 

  33. 33.

    Kavitha T, Rajendran A, Durairajan A. Synthesis and characterization of nanosized TiO2 powder derived from a sol–gel process in acidic conditions. Eng Sci Emerg Technol. 2013;4:90–5.

    Google Scholar 

  34. 34.

    Lavanya T, Satheesh K, Victor Jaya N, Mrinal D. A simple and facile route to synthesize anatase/rutile mixed phase TiO2 nanofibers with superior photocatalytic performance. Chem Tech Res. 2014;6:1681–3.

    Google Scholar 

  35. 35.

    Jacob SA, Das SJ. Effect of reaction parameters on the material properties of highly crystalline anatase titania nanopowders. Inno Res Adv Stud. 2016;3:272–7.

    Google Scholar 

  36. 36.

    Perumal S, Gnana Sambandam C, Monikandaprabu K, Ananthakumar S. Synthesis and charecterization studies of nano TiO2 prepared via sol–gel method. Res Eng Technol. 2014;3:651–7.

    Google Scholar 

  37. 37.

    Leena M, Srinivasan S. Synthesis and ultrasonic investigations of titanium oxide nanofluids. Mol Liq. 2015;206:103–9.

    CAS  Article  Google Scholar 

  38. 38.

    Ohaska T. Temperature dependence of the Raman spectrum in anatase TiO2. Phys Soc Jpn. 1980;48:1661–8.

    Article  Google Scholar 

  39. 39.

    Choi HC, Jung YM, Kim SB. Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc. 2005;37:33–8.

    CAS  Article  Google Scholar 

  40. 40.

    Choi HC, Jung YM, Kim SB. Characterization of Raman spectra of size-selected TiO2 nanoparticles by two-dimensional correlation spectroscopy. Bull Korean Chem Soc. 2004;25:426–8.

    CAS  Article  Google Scholar 

  41. 41.

    HwangY Lee JK, Lee CH. Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta. 2007;455:70–4.

    Article  Google Scholar 

  42. 42.

    Singh DK, Pandey DK, Yadav RR. An ultrasonic characterization of ferrofluid. Ultrasonics. 2009;49:634–7.

    CAS  Article  Google Scholar 

  43. 43.

    Pandey V, Mishra G, Verma SK, Wan M, Yadav RR. Synthesis and ultrasonic investigations of CuO–PVA nanofluid. Mater Sci Appl. 2012;3:664–8.

    Google Scholar 

  44. 44.

    Kiruba R, Gopalakrishnan M, Mahalingam T, Kingson Solomon Jeevaraj A. Ultrasonic studies on zinc oxide nanofluids. Nanofluids. 2012;1:97–100.

    CAS  Article  Google Scholar 

  45. 45.

    Raja Rao NSSV, Brahmajirao V, Sarma AV. Adiabatic compressibility of aqueous ethylene glycol and copper sulphate mixture at different temperatures. Arch Phys Res. 2013;4:103–11.

    CAS  Google Scholar 

  46. 46.

    Sundar LS, Ramana EV, Singh MK, Gracio J, Sousa ACM. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Commun Heat Mass Transf. 2014;56:86–95.

    Article  Google Scholar 

  47. 47.

    Sundar LS, Ramana EV, Singh MK, Gracio J, Sousa ACM. Preparation, thermal and rheological properties of propylene glycol and water mixture based Fe3O4 nanofluids. Nanofluids. 2014;3:200–9.

    CAS  Article  Google Scholar 

  48. 48.

    Asadi A, Sadodin S. Experimental study on dynamic viscosity of Mg(OH) 2–ethylene glycol nanofluid. The 2nd Iranian Conference on Heat and Mass Transf. 2014.

  49. 49.

    Suganthi KS, Rajan KS. Improved transient heat transfer performance of ZnO–propylene glycol nanofluids for energy management. Energy Convers Manag. 2015;96:115–23.

    CAS  Article  Google Scholar 

  50. 50.

    Assael MJ, Charitidou E, Avgoustiniatos S, Wakeham WA. Absolute measurements of the thermal conductivity of mixture of alkene–glycols with water. Thermophysics. 1989;10:112–40.

    Google Scholar 

  51. 51.

    Yiamsawasd T, Dalkilic AS, Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta. 2012;545:48–56.

    CAS  Article  Google Scholar 

  52. 52.

    Shibin HA, Krishnakumar TS. Experimental study on thermal conductivity of ethylene glycol/water mixture based nanofluids. Adv Res Trends Eng Technol. 2015;2:845–55.

    Google Scholar 

  53. 53.

    Sundar LS, Singh MK, Sousa ACM. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Commun Heat Mass Transf. 2013;49:17–24.

    CAS  Article  Google Scholar 

  54. 54.

    Debye P. Angular dissymmetry of the critical opalescence in liquid mixtures. Chem Phys. 1959;31:680–7.

    CAS  Google Scholar 

  55. 55.

    Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: Wiley; 2011.

    Google Scholar 

Download references


The authors would like to express their sincere thanks to the SAIF, IIT-Madras, Chennai, for providing HR-SEM and FT-Raman spectral analysis facility and the Department of Nuclear Physics, University of Madras, Chennai, for providing XRD analysis.

Author information



Corresponding author

Correspondence to M. Leena.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leena, M., Srinivasan, S. A comparative study on thermal conductivity of TiO2/ethylene glycol–water and TiO2/propylene glycol–water nanofluids. J Therm Anal Calorim 131, 1987–1998 (2018). https://doi.org/10.1007/s10973-017-6616-6

Download citation


  • Nanofluids
  • Dispersion
  • Ultrasonic velocity
  • Viscosity
  • Thermal conductivity