Abstract
In the present study, TiO2 nanoparticles (NPs) have been synthesized by the sol–gel method. As synthesized, TiO2 NPs have been characterized by X-ray diffraction, high-resolution scanning electron microscopy (HR-SEM), Fourier transformation of Raman spectroscopy and UV–visible spectroscopic techniques. The different percentage of low mass concentration of TiO2 NPs have been dispersed into the mixture of ethylene glycol (EG) + water (W) and propylene glycol (PG) + water (W) in two different volume ratios (20:80 and 70:30%). The thermal and ultrasonic properties were analysed on the prepared nanofluids at the various temperature ranges from 298.15 to 323.15 K with an interval of 5 K. The 20:80% EG/W-based fluid of TiO2 nanofluids possess a higher thermal conductivity enhancement than other TiO2 nanofluids (20:80% PG/W, 70:30% EG/W and 70:30% PG/W). These results revealed that the thermal conductivity of nanofluids depends not only on nanoparticle concentrations and temperature, but also in the types of base fluids. The inter-particle interaction of nanoparticles and cluster formation have been analysed through the variation in ultrasonic parameters. Also, the thermal conductivities of nanofluids have been calculated through ultrasonic method and the results were compared with the flash laser technique method, obtained experimentally.
This is a preview of subscription content, access via your institution.















References
- 1.
Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Therm Anal Calorim. doi:10.1007/s10973-014-4328-8.
- 2.
Huminic G, Huminic A. Application of nanofluids in heat exchangers. Renew Sustain Energy Rev. 2012;16:5625–38.
- 3.
Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Commun Heat Mass Transf. 2013;41:41–6.
- 4.
Pastoriza-Gallego MJ, Lugo L, Legido JL, Pineiro MM. Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids. Appl Phys. 2011;110:0143090–9.
- 5.
Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Heat Mass Transf. 2009;52:4675–82.
- 6.
Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. San Francisco: ASME Int Mechanical engineering Congress and Exposition; 1995.
- 7.
Safaei MR. A modified two-phase mixture model of nanofluid flow and heat transfer in a 3D curved microtube evaluation of repowering options for Montazeri power plant view project. Adv Powder Technol. 2016;27:2175–85.
- 8.
Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf. 2017;66:1321–40.
- 9.
Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO nanofluid in a sinusoidal channel with a porous medium. Phys E Low Dimens Syst Nanostruct. 2017;87:134–40.
- 10.
Hemmat Esfe M, Akbari, Toghraie D, Karimipour A, Afran M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf Res. 2014;45:409–32.
- 11.
Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Phys E Low Dimens Syst Nanostruct. 2017;86:68–75.
- 12.
Akbari OA, Toghraie D, Karimipour A, Safaei MR, Goodarzi M, Goodarzi M, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Math Comput. 2016;290:135–53.
- 13.
Sridhara V, Satapathy LN. Effect of nanoparticles on thermal properties enhancement in different oils—a review. Solid State Mater Sci. 2014;40:399–424.
- 14.
Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Commun Heat Mass Transf. 2016;75:262–9.
- 15.
Esfahani MA, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of silica/water–ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. Mol Liq. 2017;232:105–12.
- 16.
Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO –TiO2/EG hybrid nanofluid. Therm Anal Calorim. 2016;125:527–35.
- 17.
Hemmat Esfe M, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. Commun Heat Mass Transf. 2016;74:125–8.
- 18.
Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. Therm Anal Calorim. 2014;18:287–94.
- 19.
Brinkman HC. The viscosity of concentration suspensions and solution. Chem Phys. 1952;20:571–81.
- 20.
Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids. 2017;61:25–32.
- 21.
Aghanajafi A, Mehmandoust B, Toghraie D. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Phys E Low Dimens Syst Nanostruct. 2017;85:103–8.
- 22.
Noorian H, Toghraie D, Azimian AR. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transf. 2014;50:105–13.
- 23.
Hemmat Esfe M, Hassani Ahangar RH, Rejvani M, Toghraie D, Hadi Hajmohammad M. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–8.
- 24.
Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Thermal and Fluid Sci. 2016;76:342–51.
- 25.
Hemmat Esfe M, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20–80)–SAE40 hybrid nano-lubricant. Commun Heat Mass Transf. 2016;76:133–41.
- 26.
Hemmat Esfe M, Afrand M, Toghraie M, Rostamian H. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Commun Heat Mass Transf. 2016;76:202–10.
- 27.
Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. Magn Magn Mater. 2016;417:243–51.
- 28.
Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids. 2017;61:25–32.
- 29.
Yiamsawas T, Mahian O, Dalkillic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5.
- 30.
Nabeel Rashin M, Hemalatha J. A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. Mol Liq. 2014;197:257–62.
- 31.
Kavitha T, Rajendran A, Durairajan A. Preparation and characterization of nanosized TiO2 powder by sol–gel prsecipitation route. Emerg Technol Adv Eng. 2013;3:636–9.
- 32.
Nachit W, Touhtouh S, Ramzi Z, Zbair M, Eddia A, Rguiti M, Bouchikhi A, Hajjaji A, Benkhouja K. Synthesis of nanosized TiO2 powder by sol gel method at low temperature. Mol Cryst Liq Cryst. 2016;627:170–5.
- 33.
Kavitha T, Rajendran A, Durairajan A. Synthesis and characterization of nanosized TiO2 powder derived from a sol–gel process in acidic conditions. Eng Sci Emerg Technol. 2013;4:90–5.
- 34.
Lavanya T, Satheesh K, Victor Jaya N, Mrinal D. A simple and facile route to synthesize anatase/rutile mixed phase TiO2 nanofibers with superior photocatalytic performance. Chem Tech Res. 2014;6:1681–3.
- 35.
Jacob SA, Das SJ. Effect of reaction parameters on the material properties of highly crystalline anatase titania nanopowders. Inno Res Adv Stud. 2016;3:272–7.
- 36.
Perumal S, Gnana Sambandam C, Monikandaprabu K, Ananthakumar S. Synthesis and charecterization studies of nano TiO2 prepared via sol–gel method. Res Eng Technol. 2014;3:651–7.
- 37.
Leena M, Srinivasan S. Synthesis and ultrasonic investigations of titanium oxide nanofluids. Mol Liq. 2015;206:103–9.
- 38.
Ohaska T. Temperature dependence of the Raman spectrum in anatase TiO2. Phys Soc Jpn. 1980;48:1661–8.
- 39.
Choi HC, Jung YM, Kim SB. Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc. 2005;37:33–8.
- 40.
Choi HC, Jung YM, Kim SB. Characterization of Raman spectra of size-selected TiO2 nanoparticles by two-dimensional correlation spectroscopy. Bull Korean Chem Soc. 2004;25:426–8.
- 41.
HwangY Lee JK, Lee CH. Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta. 2007;455:70–4.
- 42.
Singh DK, Pandey DK, Yadav RR. An ultrasonic characterization of ferrofluid. Ultrasonics. 2009;49:634–7.
- 43.
Pandey V, Mishra G, Verma SK, Wan M, Yadav RR. Synthesis and ultrasonic investigations of CuO–PVA nanofluid. Mater Sci Appl. 2012;3:664–8.
- 44.
Kiruba R, Gopalakrishnan M, Mahalingam T, Kingson Solomon Jeevaraj A. Ultrasonic studies on zinc oxide nanofluids. Nanofluids. 2012;1:97–100.
- 45.
Raja Rao NSSV, Brahmajirao V, Sarma AV. Adiabatic compressibility of aqueous ethylene glycol and copper sulphate mixture at different temperatures. Arch Phys Res. 2013;4:103–11.
- 46.
Sundar LS, Ramana EV, Singh MK, Gracio J, Sousa ACM. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Commun Heat Mass Transf. 2014;56:86–95.
- 47.
Sundar LS, Ramana EV, Singh MK, Gracio J, Sousa ACM. Preparation, thermal and rheological properties of propylene glycol and water mixture based Fe3O4 nanofluids. Nanofluids. 2014;3:200–9.
- 48.
Asadi A, Sadodin S. Experimental study on dynamic viscosity of Mg(OH) 2–ethylene glycol nanofluid. The 2nd Iranian Conference on Heat and Mass Transf. 2014.
- 49.
Suganthi KS, Rajan KS. Improved transient heat transfer performance of ZnO–propylene glycol nanofluids for energy management. Energy Convers Manag. 2015;96:115–23.
- 50.
Assael MJ, Charitidou E, Avgoustiniatos S, Wakeham WA. Absolute measurements of the thermal conductivity of mixture of alkene–glycols with water. Thermophysics. 1989;10:112–40.
- 51.
Yiamsawasd T, Dalkilic AS, Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta. 2012;545:48–56.
- 52.
Shibin HA, Krishnakumar TS. Experimental study on thermal conductivity of ethylene glycol/water mixture based nanofluids. Adv Res Trends Eng Technol. 2015;2:845–55.
- 53.
Sundar LS, Singh MK, Sousa ACM. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Commun Heat Mass Transf. 2013;49:17–24.
- 54.
Debye P. Angular dissymmetry of the critical opalescence in liquid mixtures. Chem Phys. 1959;31:680–7.
- 55.
Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: Wiley; 2011.
Acknowledgements
The authors would like to express their sincere thanks to the SAIF, IIT-Madras, Chennai, for providing HR-SEM and FT-Raman spectral analysis facility and the Department of Nuclear Physics, University of Madras, Chennai, for providing XRD analysis.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Leena, M., Srinivasan, S. A comparative study on thermal conductivity of TiO2/ethylene glycol–water and TiO2/propylene glycol–water nanofluids. J Therm Anal Calorim 131, 1987–1998 (2018). https://doi.org/10.1007/s10973-017-6616-6
Received:
Accepted:
Published:
Issue Date:
Keywords
- Nanofluids
- Dispersion
- Ultrasonic velocity
- Viscosity
- Thermal conductivity