Skip to main content
Log in

Reference materials for thermal transport properties measurements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Accurate knowledge of thermal properties, particularly thermal conductivity and its allied properties, is essential for successful modeling, design, operation and economics of any process or system involving transmission of heat. In theory, the measurement of thermal conductivity is often viewed as a simple task but in practice it proves more complex and difficult, particularly when required now to have acceptable high precision levels over a broad range of temperature, above and below room ambient. For such purposes, depending on the type and form of specimen, the thermal conductivity (conductance) of a material, composite or system, covers an approximate very broad range of six orders of magnitude. Consequently, numerous different standard test methods have been developed, and their adequate verification is highly dependent on the use of reference materials. The present paper is based on a previous comprehensive review (Tye in Invited lectures. In: Gaal DS, Gaal PS (eds) Thermal conductivity 30 thermal expansion 18, chap 2. DEStech Publications Inc, Lancaster, PA, 2010) presented to a specialist audience at a conference having direct interests in quantitative thermal property measurements. It contained detailed up-to-date information, on the necessary requirements of test methods, documents and a discussion on the development, and use of the limited number and various types and forms of reference materials (artifacts), then available to support the measurements. Since that time, there has been a significant increase in the use of various newer methods, devoted especially to small specimens; however, little or no work has been carried out to increase the numbers and types of reference materials required for their verification. Newer techniques include one using a modification of the transient plane source technique, used by many of the perceived present audience having similar but differing requirements in qualitative measurement. The present discussion now concentrates more on these developments, availability and use and the need for additional reference materials. Specific emphasis is placed on the driving forces and difficulties involved in assembling a solution for the many current and future requirements. Differences in the type and use of available reference materials are described with examples, together with illustrations both of their correct use and misuse, or abuse that has, or may occur. Applications, where requirements for new standards are considered, and suggestions made to undertake a comprehensive study to develop additional relevant references and to improve the efficacy and precision of the newer methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tye RP. Invited lectures. In: Gaal DS, Gaal PS, editors. Thermal conductivity 30 thermal expansion 18, chap. 2. Lancaster, PA: DEStech Publications Inc; 2010. p. 226–40.

  2. Tye RP. Thermal conductivity, vols. 1 and 2. London: Academic Press; 1969.

    Google Scholar 

  3. Maglic KD et al., editors. Compendium of thermophysical property measurement methods, vol. 1. New York, NY: Plenum Press; 1991 (Ibid 1996, vol. 2).

  4. Missenard A. Le conductivité thermique des solides, liquides, gas et leur melanges. Paris: Éditions Eyrolles; 1965.

    Google Scholar 

  5. Tye RP. Measurements of thermal conductivity and related properties: a half-century of radical change. High Temp High Press. 1991;23:1–11.

    Google Scholar 

  6. Powell RW, Ho CY, Liley PE. NRDS-NBS8. 1966.

  7. Salmon DR, Roebben G, Lamberty A, Brandt R. Final Report EUR 21764EN, IRMM, Geel, Belgium; 2007.

  8. Powell RW. The thermal and electrical conductivities of metals and alloys, part 1 iron from 0 to 800C. Proc Phys Soc Lond. 1934;46:659 (See also Ibid 1939;51:407).

    Article  CAS  Google Scholar 

  9. Fulkerson W, Moore JP, McElroy DL. Comparison of the thermal conductivity, electrical resistivity and Seebeck coefficient of a high-purity iron and Armco iron to 1000C. J Appl Phys. 1966;37:2639.

    Article  CAS  Google Scholar 

  10. Tye RP. Preliminary measurements on the thermal and electrical conductivities of molybdenum, niobium, tantalum and tungsten. J Less Common Metals. 1961;3:1.

    Article  Google Scholar 

  11. Powell RW, Tye RP. Thermal and electrical conductivities of nickel-chromium (Nimonic) alloys. The Eng. 1960;209:729.

    CAS  Google Scholar 

  12. Powell RW, Tye RP. The thermal conductivity of ceramic materials and preliminary measurements with a new form of thermal comparator. In: Special ceramics 1962. London: Academic Press; 1963. p. 261–70.

  13. Powell RW, Tye RP. The thermal and electrical conductivity of liquid mercury. Int Dev Heat Transf. 1961;4:856.

    Google Scholar 

  14. Powell RW, Tye RP. New measurements on thermal conductivity reference materials. Int J Heat Mass Transf. 1967;10:581.

    Article  CAS  Google Scholar 

  15. Poensgen R. Ein technisches verfahren zur ermittlung der wärmeleitfähigkeitstoffen. Z VDI. 1912;56:1653.

    Google Scholar 

  16. Salmon DR, Tye RP. Theory and standards. In: Uher C, Morelli D, editors. Thermal conductivity 25, thermal expansion 13. Lancaster, PA: Technomic Press; 2000. p. 247–58.

  17. Sylvie Q, Venutti G, DePonte F, Lamberty A. Final Report EUR19572 EN, IRMM, Geel, Belgium; 2000.

  18. Zarr RR, Filliben JJ. Thermal, mechanical and hygric properties. In: Desjarlais AO, Zarr RR, editors. Insulation materials: testing and evaluation, STP 1426, chap. 1. Conshocohocken, PA: ASTM; 2002. p. 3–16.

  19. Salmon DR, Tye RP, Lockmuller N. A critical analysis of European standards for thermal measurements at high temperatures: I history and technical background. Meas Sci Technol. 2008;19:015101.

    Article  Google Scholar 

  20. Salmon DR, Tye RP, Lockmuller N. A critical analysis of European standards for thermal measurements at high temperatures: II recommendations for inclusion in a new standard. Meas Sci Technol. 2009;20:015102.

    Article  Google Scholar 

  21. Susanne D, Hoyer H. Private communication- EURIMA: preliminary results of a measurements Inter-comparison on a mineral wool specimen.

  22. Parker WJ, Jenkins RJ, Butler CP, Abbot GL. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Phys. 1961;32:1679.

    Article  CAS  Google Scholar 

  23. Laurent M. Comparative study on pulse thermal diffusivity measurements. Final Report, CETHIL INSA - Lyon, France; 1995.

  24. Ogawa M, Mukai T, Fukui T, Baba T. The development of a thermal diffusivity reference material using alumina. Meas Sci Technol. 2001;12:2058–63.

    Article  CAS  Google Scholar 

  25. Akoshima M, Baba T. Thermal diffusivity measurements of candidate reference materials by the laser flash method. Int J Thermophys. 2005;2:151–63.

    Article  Google Scholar 

  26. Yagi T, Taketoshi N, Baba T. Development of thin film reference material for thermal diffusivity. In: 1st International Symposium on Thermal Design and Thermophysical Property for Electronics, June 18–20, 2008, Tsukuba, Japan.

  27. Gaal PG, Apostolescu SP, Thermitus M-A. Reference materials. In: Dinwiddie R, editor. Thermal conductivity 26 thermal expansion 14, chap. 12. Lancaster, PA: DEStech Publications Inc.; 2005. p. 468–76.

  28. Jacobs-Fedore RA, Stroe DE. Thermal conductivity standards. In: Wang H, Porter W, editors. Thermal conductivity 27 thermal expansion 15, chap. 10. Lancaster, PA: DEStech Publications Inc.; 2005. p. 231–38.

  29. Clark J, Tye RP. Further development of high thermal conductivity metal reference materials. High Temp High Press. 2005;35/36:1–14.

    Article  Google Scholar 

  30. Tye RP, Salmon RR. Reference materials. In: Dinwiddie R, editors. Thermal conductivity 26, thermal expansion 14, chap. 12. Lancaster, PA: DEStech Publications Inc.; 2005. p. 437–51.

  31. Pelanne CM, Bradley CB. A rapid heat-flow meter thermal conductivity apparatus. Mats Res Std. 1962;2(7):549.

    Google Scholar 

  32. Howard JF, Coumou KG, Tye RP. A direct reading thermal conductivity instrument with digital read-out for the measurement of heat transmission in cellular plastics. J Cell Plast. 1973;9(5):3.

    Article  Google Scholar 

  33. Tye RP, Coumou KG, Desjarlais AO, Haines DM. Research. In: Powell FJ, Matthews SM, editors. Thermal insulations: materials and systems, chap. 12. ASTM STP 922. Conshohocken, PA: ASTM; 1987. p. 518–87.

  34. Salmon DR, Tye RP. An intercomparison of heat-flow meter apparatus within the United Kingdom and Eire. High Temp High Press. 2002;32:19–28.

    Article  Google Scholar 

  35. Coumou KG, Tye RP. A laboratory instrument for rapid determination of thermal conductivities in the Range 0.4 to 5W/m.K. High Temp High Press. 1981;13:695.

    CAS  Google Scholar 

  36. Hatta I, Kato R, Maesono A. A development of ac calorimetric method for thermal diffusivity measurement. Jpn J Appl Phys. 1987;26(3):475.

    Article  CAS  Google Scholar 

  37. Kato R, Maesono A, Tye RP. Diamonds, films and coatings. In: Gaal PS, Apostolescu DE, editors. Thermal conductivity 24 thermal expansion 12, chap. 3C. Lancaster, PA: Technomic Press; 1999. p. 572–80.

  38. Feldman A, Balzaretti NM. Workshop on thin films thermal conductivity measurements at the Thirteenth Symposium on Thermophysical Properties. J Res Natl Stand Technol. 1998;103:107.

    Article  Google Scholar 

  39. Tye RP, Kubicar L, Lockmuller N. The development of a standard for contact transient methods of measurement of thermophysical properties. Int J Thermophys. 2005;25(6):1917.

    Article  Google Scholar 

  40. See www.evitherm.org. Thermal conductivity/diffusivity.

  41. Taylor RE. Experimental techniques and considerations 1. In: Cremers CJ, Fine HA, editors. Thermal conductivity 21, chap. 2. New York, NY: Plenum Press; 1990. p. 41–8.

  42. Vasilos T, Kingery WD. Thermal conductivity: XI conductivity on some refractory carbides and nitrides. J Am Ceram Soc. 1954;37(9):409.

    Article  CAS  Google Scholar 

  43. Taylor RE, Morreale JJ. Thermal conductivity of titanium carbide, zirconium carbide, and titanium nitride at high temperatures. J Am Ceram Soc. 1964;47:69–73.

  44. Powell RW, Tye RP. In: Popper P, editor. Special ceramics 1964. London: Academic Press; 1965. p. 243.

  45. Mathis N, Chandler C. Direct thermal conductivity measurement technique, patent no. 6676287, 13 Jan 2004.

  46. Mikalic D, Milovanovic B. TCi system for non-destructive determination of thermal properties of materials. In: Proceedings of 10th European Conference on Non-destructive Testing 2010, Curran Associates, Hook, NY, vol. 2, sect. 1–5; 2010. p. 1364–93.

  47. Cho J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat-flow meter, laser flash and TCi. J Therm Anal Calorim. 2010;109(1):295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tye, R.P., Hume, D. Reference materials for thermal transport properties measurements. J Therm Anal Calorim 131, 289–299 (2018). https://doi.org/10.1007/s10973-017-6532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6532-9

Keywords

Navigation