Skip to main content
Log in

An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, with the aim of enhancing the thermal conductivity of the fluid, a nanofluid is prepared based on SiO2. A series of experimental tests were carried out for both laminar and forced convection regimes in a horizontal tube with two different geometric shapes (circular and square cross section) subjected to constant wall heat flux (4735 W m−2). A comparative study has been done to investigate the effect of the geometry on the convective heat transfer. Moreover, the effect of the volume concentration on the behavior of the nanofluid and the base fluid was evaluated by comparing various volume concentrations (0.05, 0.07 and 0.2%). The experiments were done under two different conditions: constant Reynolds number and constant mass flow rate. It was found that the circular-shaped channel could be better for heat transfer purposes at the same flow rate, while the square-shaped channel has a higher heat transfer coefficient at the same Reynolds number. The slope of the lines for the square cross section is more than that for circular cross sections which result in a steeper increase in average heat transfer coefficient versus Reynolds number in the square-shaped channel. The increase of the Reynolds number may decrease the dead zones in the square channel that causes the double enhancement of the average heat transfer coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

k :

Conductivity

φ :

Volume concentration

μ :

Viscosity

ρ :

Density

\(C_{\text{p}}\) :

Specific heat

\(Q_{\text{loss}}\) :

Heat loss

V :

Supply voltage

R :

Wire resistance

\(T_{\text{out}}\) :

Outlet temperature

\(T_{\text{in}}\) :

Inlet temperature

\(\dot{m}\) :

Mass flow rate

P :

Cross-sectional perimeter

L :

Pipe length

Re :

Reynolds number

Nu :

Nusselt number

Pr :

Prandtl number

D :

Pipe diameter

x :

Axial distance

h :

Convective heat transfer coefficient

References

  1. Minea AA. Numerical studies on heat transfer enhancement in different closed enclosures heated symmetrically. J Therm Anal Calorim. 2015;121(2):711–20.

    Article  CAS  Google Scholar 

  2. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of y-A12O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei. 1993;4(4):227–33.

    Article  Google Scholar 

  3. Chon CH, Kihm KD. Thermal conductivity enhancement of nanofluids by Brownian motion. J Heat Transf. 2005;127(8):810.

    Article  Google Scholar 

  4. Bergman TL. Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. Int J Heat Mass Transf. 2009;52:1240–4.

    Article  CAS  Google Scholar 

  5. Ferrouillat S, Bontemps A, Ribeiro JP, Gruss JA, Soranio O. Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. Int J Heat Fluid Flow. 2011;32:424–39.

    Article  CAS  Google Scholar 

  6. Rea U, McKrell T, Hu LW, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int J Heat Mass Transf. 2009;52:2042–8.

    Article  CAS  Google Scholar 

  7. Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S. Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int J Heat Mass Transf. 2011;54:4376–88.

    Article  CAS  Google Scholar 

  8. Peyghambarzadeh SM, Hashemabadi SH, Seifi Jamnani M, Hoseini SM. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Appl Therm Eng. 2011;31:1833–8.

    Article  CAS  Google Scholar 

  9. Özerinç S, Yazicioglu AG, Kakaç S. Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion. Int J Therm Sci. 2012;62:138–48.

    Article  Google Scholar 

  10. Lotfi R, Saboohi Y, Rashidi AM. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. Int Commun Heat Mass Transfer. 2010;37:74–8.

    Article  CAS  Google Scholar 

  11. Nassan TH, Heris SZ, Noie SH. A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct. Int Commun Heat Mass Transf. 2010;37:924–8.

    Article  CAS  Google Scholar 

  12. Escher W, Brunschwiler T, Shalkevich N, Burgi T, Michel B, Poulikakos D. On the cooling of electronics with nanofluids. J Heat Transf. 2011;133:051401–11.

    Article  Google Scholar 

  13. Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111(2):1615–25.

    Article  Google Scholar 

  14. Minea AA. Comparative study of turbulent heat transfer of nanofluids: effect of thermophysical properties on figure of merit ratio. J Therm Anal Calorim. 2016;124(1):407–16.

    Article  CAS  Google Scholar 

  15. Moghadassi A, Masoud Hosseini S, Henneke D, Elkamel A. A model of nanofluids effective thermal conductivity based on dimensionless groups. J Therm Anal Calorim. 2009;96(1):81–4.

    Article  CAS  Google Scholar 

  16. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluid. J Therm Anal Calorim. 2014;117(2):675–81.

    Article  CAS  Google Scholar 

  17. Mehrjou B, Heris SZ, Mohamadifard K. Experimental study of CuO/water nanofluid turbulent convective heat transfer in square cross-section duct. Exp Heat Transf. 2015;28(3):282–97.

    Article  CAS  Google Scholar 

  18. Esmaeilzadeh E, Almohammadi H, Nasiri Vatan Sh, Omrani AN. Experimental investigation of hydrodynamics and heat transfer characteristics of γ-Al2O3/water under laminar flow inside a horizontal tube. Int J Therm Sci. 2013;63:31–7.

    Article  CAS  Google Scholar 

  19. Cengel YA, Ghajar AJ, Ma H. Heat and mass transfer: fundamentals & applications. 4th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  20. Alawi OA, Sidik NAC, Mohammed HA, Syahrullail S. Fluid flow and heat transfer characteristics of nanofluids in heat pipes: a review. Int Commun Heat Mass Transf. 2014;56:50–62.

    Article  CAS  Google Scholar 

  21. Das K, Duari PR, Kundu PK. Numerical simulation of nanofluid flow with convective boundary condition. J Egypt Math Soc. 2015;23(2):435–9.

    Article  Google Scholar 

  22. Devendiran DK, Amirtham VA. A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016;60:21–40.

    Article  CAS  Google Scholar 

  23. Solangi KH, Kazi SN, Luhur MR, Badarudin A, Amiri A, Sadri R, Zubir MNM, Gharehkhani S, Teng KH. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy. 2015;89:1065–86.

    Article  CAS  Google Scholar 

  24. Halelfadl S, Maré T, Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Thermal Fluid Sci. 2014;53:104–10.

    Article  CAS  Google Scholar 

  25. Sarafraz MM, Hormozi F. Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a plate heat exchanger. Exp Thermal Fluid Sci. 2016;72:1–11.

    Article  CAS  Google Scholar 

  26. Huminic G, Huminic A. Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: a review. Renew Sustain Energy Rev. 2016;58:1327–47.

    Article  CAS  Google Scholar 

  27. Purohit N, Purohit VA, Purohit K. Assessment of nanofluids for laminar convective heat transfer: a numerical study. Eng Sci Technol Int J. 2016;19(1):574–86.

    Article  Google Scholar 

  28. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Thermal Fluid Sci. 2016;76:342–51.

    Article  CAS  Google Scholar 

  29. Vanaki ShM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pourfayaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourfayaz, F., Sanjarian, N., Kasaeian, A. et al. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. J Therm Anal Calorim 131, 1577–1586 (2018). https://doi.org/10.1007/s10973-017-6500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6500-4

Keywords

Navigation