Skip to main content
Log in

Thermoanalytical (TG/DSC/EVG–GC–MS) characterization of the lanthanide (Ho) iron garnet formation in sol–gel

Thermal process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the investigation of formation mechanism of holmium iron garnet (Ho3Fe5O12, HoIG) prepared by an aqueous sol–gel method was reported. We specifically focused on the identification of species released during the thermal decomposition of the Ho–Fe–O precursor gel using thermal analysis method. The formation of holmium iron garnet phase and some magnetic properties were investigated by X-ray diffraction analysis, Mössbauer spectroscopy and TG–DSC measurements. Evolved gas analysis of the decomposition products of gel precursor was performed by coupled TG–GC–MS method. In addition, the Curie temperatures of series of rare earth iron garnets were measured using thermal analyser with the small permanent magnet. The influence of the transition temperature from ferrimagnetic to paramagnetic state on the nature of lanthanide element in the iron garnets has been also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Suchomski C, Reitz C, Pajic D, Jaglicic Z, Djerdj I, Brezesinski T. Large-pore mesoporous Ho3Fe5O12 thin films with a strong room-temperature perpendicular magnetic anisotropy by sol–gel processing. Chem Mater. 2014;26:2337–43.

    Article  CAS  Google Scholar 

  2. Harris IR, Williams AJ. Magnetic materials. In: Rawlings RD, editor. Material science and engineering, vol. 2. Oxford: Eolls Publishers; 2009. p. 49–84.

    Google Scholar 

  3. Callister WD, Rethwisch DG. Materials science and engineering: an introduction. 9th ed. London: Wiley; 2013.

    Google Scholar 

  4. Coey JMD. Magnetism and magnetic materials. New York: Cambridge University Press; 2009.

    Google Scholar 

  5. Dobrzański LA, Drak M, Ziębowicz B. Materials with specific magnetic properties. J Achiev Mater Manuf Eng. 2006;17:37–40.

    Google Scholar 

  6. Suñol JJ, González A, Escoda L, Vilaró A. Curie temperature in Fe(Ni)Nb based mechanically alloyed materials. J Therm Anal Calorim. 2005;80:257–61.

    Article  Google Scholar 

  7. Lin DM, Lin ML, Lin MH, Wu YC, Wang HS, Chen YJ. Studies of nanocrystalline phase and residual amorphous phase of FeCuNbSib alloy using TG(M) technique. J Therm Anal Calorim. 1999;58:355–62.

    Article  CAS  Google Scholar 

  8. Brown ME. Introduction to thermal analysis: techniques and applications. London: Chapman and Hall; 1988.

    Book  Google Scholar 

  9. Luciani G, Costantini A, Branda F, Scardi P, Lanotte L. Thermal evolution of ferromagnetic metallic glasses. J Therm Anal Calorim. 2003;72:105–11.

    Article  CAS  Google Scholar 

  10. Boyanov BS. Synthesis and neel temperature determination of ferrites from the CuO–ZnO−Fe2O3 system. J Therm Anal. 1995;44:707–16.

    Article  CAS  Google Scholar 

  11. Sugimoto M. The past, present, and future of ferrites. J Am Ceram Soc. 1999;82:269–80.

    Article  CAS  Google Scholar 

  12. Caffarena VR, Ogasawara T. Microstructure and hysteresis curves of samarium-holmium-iron garnet synthesized by coprecipitation. Mater Res. 2003;6:569–76.

    Article  Google Scholar 

  13. Caffarena VR, Ogasawara T, Pinho MS, Capitaneo JL. Samarium-iron garnet nanopowder obtained by co-precipitation. Latin Am Appl Res. 2006;36:137–40.

    CAS  Google Scholar 

  14. Cheng Z, Yang H. Synthesis and magnetic properties of Sm–Y3Fe5O12 nanoparticles. Phys E. 2007;39:198–202.

    Article  CAS  Google Scholar 

  15. Ramesh T, Shinde RS, Murthy SR. Nanocrystalline gadolinium iron garnet for circulator applications. J Magn Magn Mater. 2012;324:3668–73.

    Article  CAS  Google Scholar 

  16. McCloy JS, Walsh B. Sublattice magnetic relaxation in rare earth iron garnets. Trans Magn IEEE. 2013;49:4253–6.

    Article  CAS  Google Scholar 

  17. Nguyet DTT, Duong NP, Satoh T, Anh LN, Hien TD. Magnetization and coercivity of nanocrystalline gadolinium iron garnet. J Magn Magn Mater. 2013;332:180–5.

    Article  CAS  Google Scholar 

  18. Suchomski C, Reitz C, Sousa CT, Araujo JP, Brezesinski T. Room temperature magnetic rare-earth iron garnet thin films with ordered mesoporous structure. Chem Mater. 2013;25:2527–37.

    Article  CAS  Google Scholar 

  19. Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing. San Diego: Academic Press; 1990.

    Google Scholar 

  20. Di Maggio R, Campostrini R, Guella G. Gels from modified zirconium n-butoxide: a pyrolysis study by coupled thermogravimetry, gas chromatographic, and mass spectrometric analyses. Chem Mater. 1998;10:3839–47.

    Article  Google Scholar 

  21. Egger P, Dirè S, Ischia M, Campostrini R. Pyrolysis study of sol–gel derived zirconia by TG–GC–MS. J Therm Anal Calorim. 2005;81:407–15.

    Article  CAS  Google Scholar 

  22. Oja Açik I, Madarász J, Krunks M, Tõnsuaadu K, Janke D, Pokol G, Niinistö L. Thermoanalytical studies of titanium(IV) acetylacetonate xerogels with emphasis on evolved gas analysis. J Therm Anal Calorim. 2007;88:557–63.

    Article  Google Scholar 

  23. Pinkas J, Reichlova V, Serafimidisova A, Moravec Z, Zboril R, Jancik D, Bezdicka P. Sonochemical synthesis of amorphous yttrium iron oxides embedded in acetate matrix and their controlled thermal crystallization toward garnet (Y3Fe5O12) and perovskite (YFeO3) nanostructures. J Phys Chem C. 2010;114:13557–64.

    Article  CAS  Google Scholar 

  24. Xie W, Pan W-P. Thermal characterization of materials using evolved gas analysis. J Therm Anal Calorim. 2001;65:669–85.

    Article  CAS  Google Scholar 

  25. Opuchovic O, Kareiva A, Mazeika K, Baltrunas D. Magnetic nanosized rare earth iron garnets R3Fe5O12: sol–gel fabrication, characterization and reinspection. J Magn Magn Mater. 2016;. doi:10.1016/j.jmmm.2016.09.041.

    Google Scholar 

  26. Masoudpanah SM, Mirkazemi SM, Shabani S, Dolat Abadi PT. The effect of the ethylene glycol to metal nitrate molar ratio on the phase evolution, morphology and magnetic properties of single phase BiFeO3 nanoparticles. Ceram Int. 2015;41:9642–6.

    Article  CAS  Google Scholar 

  27. Opuchovic O, Beganskiene A, Kareiva A. Sol–gel derived Tb3Fe5O12 and Y3Fe5O12 garnets: synthesis, phase purity, micro-structure and improved design of morphology. J Alloys Compd. 2015;647:189–97.

    Article  CAS  Google Scholar 

  28. Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc. 2003;125:16176–7.

    Article  CAS  Google Scholar 

  29. Arun T, Vairavel M, Gokul Raj S, Justin JR. Crystallization kinetics of Nd-substituted yttrium iron garnet prepared through sol–gel auto-combustion method. Ceram Int. 2012;38:2369–73.

    Article  CAS  Google Scholar 

  30. Lataifeh M, Lehlooh AF, Mahmood S. Mössbauer spectroscopy of Al substituted Fe in holmium iron garnet. Hyperfine Interact. 1999;122:253–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. S-LZ-17-6) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Opuchovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opuchovic, O., Niznansky, D. & Kareiva, A. Thermoanalytical (TG/DSC/EVG–GC–MS) characterization of the lanthanide (Ho) iron garnet formation in sol–gel. J Therm Anal Calorim 130, 1085–1094 (2017). https://doi.org/10.1007/s10973-017-6492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6492-0

Keywords

Navigation