Skip to main content
Log in

Preparation, characterization, antimicrobial and anticancer activities of Schiff base mixed ligand complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new Schiff base ligand (HL) derived from quinoline-2-carboxaldehyde with 2-aminophenol (1:1 molar ratio) and its mixed ligand complexes, viz. 2,2′-bipyridine (1:1:1 molar ratio), have been synthesized and characterized by elemental analysis, spectroscopic studies, X-ray diffraction, ESR, magnetic and thermal analysis. The molar conductance measurement of mixed ligand complexes in DMF showed that Zn(II) and Cd(II) complexes were nonelectrolytes; however, Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes were electrolytes. The transition metal complexes had octahedral geometry with a general molecular formulae [M(L)(2,2′-bipy)(H2O)]Cl x ·nH2O (M = Cr(III) (x = n = 2), Mn(II) and Co(II) (x = 1, n = 0), Ni(II) and Cu(II) (x = n = 1) and [M(L)(2,2′-bipy)Cl]Cl x ·nH2O (M = Fe(III) (x = 1, n = 3), Zn(II) (x = 0, n = 1) and Cd(II) (x = 0, n = 2)). Also, Schiff base ligand and its mixed ligand complexes were screened against Gram-positive bacteria (Streptococcus pneumoniae, Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli) and fungal species (Aspergillus fumigatus, Candida albicans). Gentamicin, ampicillin and amphotericin B were used as standard drugs for Gram positive, Gram negative and antifungal activity, respectively. The results showed that all mixed ligand complexes have antimicrobial activity higher than free Schiff base ligand. In addition, anticancer activity of Schiff base ligand and its mixed ligand metal complexes were also tested against breast cancer cell line (MCF-7) and colon cancer cell line (HCT-116). Cd(II) complex showed the highest IC50 against two cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mahmoud WH, Mahmoud NF, Mohamed GG, El-Sonbati AZ, El-Bindary AA. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes. J Mol Struct. 2015;1095:15–25.

    Article  CAS  Google Scholar 

  2. El-Sonbati AZ, Belal AAM, El-Gharib MS, Morgan S. Supramolecular structure, mixed ligands and substituents effect on the spectral studies of oxovanadium(IV) complexes of bioinorganic and medicinal relevance. Spectrochim Acta A. 2012;95:627–36.

    Article  CAS  Google Scholar 

  3. Annaraj B, Balakrishnan C, Neelakantan MA. Synthesis, structure information, DNA/BSA binding affinity and in vitro cytotoxic studies of mixed ligand copper(II) complexes containing a phenylalanine derivative and diimine co-ligands. J Photochem Photobiol B. 2016;160:278–91.

    Article  CAS  Google Scholar 

  4. Neelaeni R, Vasantha S, Keerthana R, Sivakolunthu S, Angeline T. DNA cleavage activity of novel schiff base copper(II) complexes with sulfur containing-ligand (2-(2-methyl-thio)phenylimino)methylphenol, N-benzylidine-2-methylthioaniline. Asian J Pharm Clin Res. 2016;9:277–81.

    Article  Google Scholar 

  5. Kudrat-E-Zahan M, Alim Abdul M, Haque MM, Lokonuzzaman A, Sher AM, Saiidul IM. Studies on the mixed ligand complexes of Co(II), Ni(II) and Cu(II) with phthalimide and heterocyclic amines. Int J Mater Sci Appl. 2015;4:120–3.

    CAS  Google Scholar 

  6. Melinmath SP, Venkatesh KB, Rekha ND, AshaIyengar T. Mononuclear mixed ligand transition metal complexes: synthesis, characterization, antioxidant and antimicrobial activity along with DNA cleavage studies. IAJPR. 2015;5:2503–11.

    CAS  Google Scholar 

  7. Creaven BS, Devereux M, Foltyn A, McClean S, Rosair G, Thangella VR, Walsh M. Quinolin-2(1H)-one-triazole derived Schiff bases and their Cu(II) and Zn(II) complexes: possible new therapeutic agents. Polyhedron. 2010;29:813–22.

    Article  CAS  Google Scholar 

  8. Marcaccino S, Pepino R, Pozo MC, Basurto S, Garia-valverde M, Torroba T. One-pot synthesis of quinolin-2-(1H)-ones via tandem Ugi-Knoevenagel condensations. Tetrahedron Lett. 2004;45:3999–4001.

    Article  Google Scholar 

  9. Kulkarni NV, Hegde GS, Kurdekar GS, Budagumpi S, Sathisha MP, Revankar VK. Spectroscopy, electrochemistry and structure of 3d-transition metal complexes of thiosemicarbazones with quinoline core: evaluation of antimicrobial property. Int J Rapid Commun. 2010;43:235–46.

    CAS  Google Scholar 

  10. Sudha N, Selvi G. Synthesis, characterization and biological studies on Fe(II) and Zn(II) quinoline Schiff Base complexes. Int J Chem Tech Res. 2015;8:367–74.

    CAS  Google Scholar 

  11. Solomon VR, Lee H. Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem. 2011;18:1488–508.

    Article  CAS  Google Scholar 

  12. Bentzinger G, De SW, Mullié C, Agnamey P, Dassonville-Klimpt A, Sonnet P. Asymmetric synthesis of new antimalarial aminoquinolines through Sharpless aminohydroxylation. Tetrahedron Asymmetry. 2016;27:1–11.

    Article  CAS  Google Scholar 

  13. Anantacharya R, Manjulatha K, Satyanarayan ND, Santoshkumar S, Kaviraj MY. Antiproliferative, DNA cleavage, and ADMET study of substituted 2-(1-benzofuran-2-yl) quinoline-4-carboxylic acid and its esters. Cogent Chem. 2016;2:2016. doi:10.1080/23312009.1158382.

    Article  Google Scholar 

  14. Nkoana W, Nyoni D, Chellan P, Stringer T, Taylor D, Smith PJ, Hutton AT, Smith GS. Heterometallic half-sandwich complexes containing a ferrocenyl motif: synthesis, molecular structure, electrochemistry and antiplasmodial evaluation. J Organomet Chem. 2014;752:67–75.

    Article  CAS  Google Scholar 

  15. Maddela S, Makulaa A, Maddela R. Synthesis of isatin-quinoline conjugates as possible biologically active agents. Toxicol Environ Chem. 2014;96:1–11.

    Article  CAS  Google Scholar 

  16. Muruganantham N, Sivakumar R, Anbalagan N, Gunasekaran V, Leonard JT. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol Pharm Bull. 2004;2:1683–7.

    Article  Google Scholar 

  17. Shinkai H, Ito T, Ida T, Kitao Y, Yamadu H, Uchida I. 4-Aminoquinolines: novel nociceptin antagonists with analgesic activity. J Med Chem. 2000;43:4667–77.

    Article  CAS  Google Scholar 

  18. Papageorgion C, Matt AV, Joergensen J, Anderson E, Wagner K, Beerli C, Than T, Borex X, Florineth A, Rihs S, Schreier MH, Weckbecker G, Hausser C. Aromatic quinolinecarboxamides as selective, orally active antibody production inhibitors for prevention of acute xenograft rejection. J Med Chem 2001;44:1986–92.

  19. Pascual-Àlvarez A, Topala T, Estevan F, Sanz F, Alzuet-Piña G. Photoinduced and self-activated nuclease activity of copper(II) complexes with N-(Quinolin-8-yl)quinolin-8-sulfonamide—DNA and bovine serum albumin binding. Eur J Inorg Chem. 2016;7:982–94.

    Article  Google Scholar 

  20. Mruthyunjayasswamy BHM, Vivekanand DB, Mahenra RK. Synthesis, characterization and DNA cleavage studies of some transition metal complexes derived from 5-chloro-3-phenyl-N′(tetrazolo[1,5-a]quinolin-4-ylmethylene)-1H-indole-2-carbohydrazide. Res J Pharm Biol Chem Sci. 2014;5:1057–70.

    Google Scholar 

  21. Mistry BM, Jauhari S. Synthesis and evaluation of some quinoline Schiff bases as a corrosion inhibitor for mild steel in 1 N HCl. Res Chem Intermed. 2013;39:1049–68.

    Article  CAS  Google Scholar 

  22. Veledo MT, Pelaez-Lorenzo C, Gonzalez R, de Frutos M, Diez-Masa JC. Protein fingerprinting of Staphylococcus species by capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. Anal Chim Acta. 2010;658:81–6.

    Article  CAS  Google Scholar 

  23. Sarmah PP, Deb B, Borah BJ, Fuller AL, Slawin AMZ, Woollins JD, Dutta DK. Rhodium(I) carbonyl complexes of quinoline carboxaldehyde ligands and their catalytic carbonylation reaction. J Organomet Chem. 2010;695:2603–8.

    Article  CAS  Google Scholar 

  24. Qin J, Li T, Wang B, Yang Z, Fan L. A sensor for selective detection of Al3+ based on quinoline Schiff-base in aqueous media. Synth Met. 2014;195:141–6.

    Article  CAS  Google Scholar 

  25. Flaschka HA. EDTA titration. 2nd ed. New York: Pergamon Press; 1964. p. 81–6.

    Google Scholar 

  26. Vogel AI. Textbook of quantitative inorganic analysis. 4th ed. London: Longman; 1978.

    Google Scholar 

  27. West TS. Complexometry with EDTA and related reagents. 3rd ed. Pools: DBH Ltd.; 1969.

    Google Scholar 

  28. Scott AC. Laboratory control of antimicrobial therapy. In: Collee JG, et al., editors. Practical medical microbiology. 13th ed. Edinburgh: Churchill Livingstone; 1989. p. 161–81.

    Google Scholar 

  29. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1993;65:55–63.

    Article  Google Scholar 

  30. Abd El-Halim HF, Mohamed GG, El-Dessouky MM, Mahmoud WH. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) ions: synthesis, structural characterization and biological activity studies. Spectrochim Acta Part A. 2011;82:8–19.

    Article  CAS  Google Scholar 

  31. Mahmoud WH, Mohamed GG, El-Dessouky MM. Synthesis, characterization and in vitro biological activity of mixed transition metal complexes of lornoxicam with 1,10-phenanthroline. Int J Electrochem Sci. 2014;9:415–38.

    Google Scholar 

  32. Mohamed GG, Soliman MH. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity. Spectrochim Acta Part A. 2010;76:341–7.

    Article  Google Scholar 

  33. Wei Q, Dong J, Zhao P, Li M, Cheng F, Kong J, Li L. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands. J Photochem Photobiol B Biol. 2016;161:355–67.

    Article  CAS  Google Scholar 

  34. Abd El-Halim HF, Mohamed GG. Synthesis, spectroscopic studies, thermal analyses, biological activity of tridentate coordinated transition metal complexes of bi(pyridyl-2-ylmethyl)amine]ligand. J Mol Struct. 2015;1104:91–5.

    Article  Google Scholar 

  35. Meenongwa A, Brissos RF, Soikum C, Chaveerach P, Gamez P, Trongpaniche Y, Chaveerach U. Effects of N, N-heterocyclic ligands on the in vitro cytotoxicity and DNA interactions of copper(II) chloride complexes from amidino-O-methylurea ligands. New J Chem. 2016;40:5861–76.

    Article  CAS  Google Scholar 

  36. Reddy PR, Shilpa A. Oxidative and hydrolytic DNA cleavage by Cu(II) complexes of salicylidene tyrosine schiff base and 1,10-phenanthroline/bipyridine. Polyhedron. 2011;30:565–72.

    Article  CAS  Google Scholar 

  37. Sheikhshoaie I, Ebrahimipour SY, Lotfi N, Mague JT, Khaleghi M. Synthesis, spectral characterization, X-ray crystal structure and antimicrobial activities of two cis dioxido-vanadium(V) complexes incorporating unsymmetrical dimalonitrile-based (NNO) Schiff base ligands. Inorg Chim Acta. 2016;442:151–7.

    Article  CAS  Google Scholar 

  38. Soliman MH, Hindy AM, Mohamed GG. Thermal decomposition and biological activity studies of some transition metal complexes derived from mixed ligands sparfloxacin and glycine. J Therm Anal Calorim. 2014;115:987–1001.

    Article  CAS  Google Scholar 

  39. Kivelson D, Meiman R. ESR studies on the bonding in copper complexes. J Chem Phys. 1961;35:149–55.

    Article  CAS  Google Scholar 

  40. Chandra S, Sangeetika X. EPR, magnetic and spectral studies of copper(II) and nickel(II) complexes of schiff base macrocyclic ligand derived from thiosemicarbazide and glyoxal. Spectrochim Acta Part A. 2004;60:147–53.

    Article  Google Scholar 

  41. Hathaway BJ. D.E. Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of cu(II) ion. Chem Rev. 1970;5:143–207.

    CAS  Google Scholar 

  42. El-Sonbati AZ, Diab MA, El-Bindary AA, Mohamed GG, Morgan SM. Thermal, spectroscopic studies and hydrogen bonding in supramolecular assembly of azo rhodanine complexes. Inorg Chim. 2015;430:96–107.

    Article  CAS  Google Scholar 

  43. El-Ghamaz NA, El-Sonbati AZ, Diab MA, El-Bindary AA, Mohamed GG, Morgan SM. Correlation between ionic radii and of metal azodye complexes and electrical conductivity. Spectrochim Acta A. 2015;147:200–11.

    Article  CAS  Google Scholar 

  44. Velumania S, Mathew X, Sebatain PJ, Narayandass SK, Managlaraj D. Structural and optical properties of hot wall deposited CdSe thin films. Sol Energy Mater Sol Cells. 2003;76:347–58.

    Article  Google Scholar 

  45. Sasavaraja S, Salaji DS, Bedre MD, Raghunandan D, Swamy PM, Venkatarmam A. Solvo-thermal synthesis and characterization of acicular α-Fe2O3 nanoparticles. Bull Mater Sci. 2011;34:1313–7.

    Article  Google Scholar 

  46. El-Sonbati AZ, El-Bindary AA, Mohamed GG, Morgan SM, Hassan WM, Elkholy AK. Geometrical structures, thermal properties and antimicrobial activity studies of azodye complexes. J Mol Liquids. 2016;218:16–34.

    Article  CAS  Google Scholar 

  47. Abd El-Halim HF, Nour El-Dien FA, Mohamed GG, Mohamed NA. Synthesis, spectroscopic, thermal characterization and antimicrobial activity of miconazole drug and its metal complexes. J Therm Anal Calorim. 2012;109:883–92.

    Article  CAS  Google Scholar 

  48. Pelczar MJ, Chan ECS, Krieg NR. Host–parasite interaction; nonspecific host resistance. In: Microbiology concepts and applications, 6th ed. New York: McGraw-Hill Inc.; 1999, p. 478–9.

  49. Prescott LM, Harley JP, Klien DA. Microbiology, 2nd ed. Wm. C. Brown Communications, Inc.; 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Abd El-Halim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Halim, H.F., Omar, M.M. & Anwar, M.N. Preparation, characterization, antimicrobial and anticancer activities of Schiff base mixed ligand complexes. J Therm Anal Calorim 130, 1069–1083 (2017). https://doi.org/10.1007/s10973-017-6491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6491-1

Keywords

Navigation