Skip to main content
Log in

Thermal transformation of water-dispersible magnetite nanoparticles

Synthesis of water-dispersible maghemite nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal transformation of water-dispersible magnetite (Fe3O4) nanoparticles formed by the thermal decomposition of [Fe(NH2CONH2)6](NO3)3 in triethylene glycol (TEG) was studied to explore the possibilities of the synthesis of water-dispersible maghemite (γ-Fe2O3) using X-ray diffraction, differential thermal analysis, thermogravimetric analysis, and Fourier transformed infrared spectroscopy. The structural and magnetic properties of resulting γ-Fe2O3 nanoparticles were characterized using N2 adsorption–desorption, transmission electron microscopy, UV–Vis absorption spectroscopy, and vibrating sample magnetic measurements. The results show that the oxidation of Fe3O4 nanoparticles at 150 °C for 6 h can produce superparamagnetic γ-Fe2O3 nanoparticles less than 10 nm in size coated with a TEG layer. The obtained γ-Fe2O3 nanoparticles are highly dispersible in water owing to the hydrophilic properties of the TEG coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu S, Chow GM. Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem. 2004;14:2781–6.

    Article  CAS  Google Scholar 

  2. Shkilnyy A, Munnier E, Hervé K, Soucé M, Benoit R, Cohen-Jonathan S, Limelette P, Saboungi M-L, Dubois P, Chourpa I. Synthesis and evaluation of novel biocompatible super-paramagnetic iron oxide nanoparticles as magnetic anticancer drug carrier and fluorescence active label. J Phys Chem C. 2010;11:45850–8.

    Google Scholar 

  3. Dobson J. Magnetic micro- and nano-particle-based targeting for drug and gene delivery. Nanomedicine. 2006;1:31–7.

    Article  CAS  Google Scholar 

  4. Latham AH, Williams ME. Controlling transport and chemical functionality of magnetic nanoparticles. Acc Chem Res. 2008;41:411–20.

    Article  CAS  Google Scholar 

  5. Kluchova K, Zboril R, Tucek J, Pecova M, Zajoncova L, Safarik I, Mashlan M, Markova I, Jancik D, Sebela M, Bartonkova H, Bellesi V, Novak P, Petridis D. Superparamagnetic maghemite nanoparticles from solid-state synthesis—their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials. 2009;30:2855–63.

    Article  CAS  Google Scholar 

  6. Wang Y-XJ, Hussain SH, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.

    Article  CAS  Google Scholar 

  7. Gálvez N, Kedracka EJ, Carmona F, Céspedes-Guirao FJ, Font-Sanchis E, Fernández-Lázaro F, Sastre-Santos Á, Domínguez-Vera JM. Water soluble fluorescent-magnetic perylenediimide-containing maghemite-nanoparticles for bimodal MRI/OI imaging. J Inorg Biochem. 2012;117:205–11.

    Article  Google Scholar 

  8. Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46:1222–44.

    Article  CAS  Google Scholar 

  9. Wei X, Wei Z, Zhang L, Liu Y, He D. Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid: preparation, structure characterization, and surface coordination. J Colloid Interface Sci. 2011;354:76–81.

    Article  CAS  Google Scholar 

  10. Petcharoen K, Sirivat A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng B. 2012;177:421–7.

    Article  CAS  Google Scholar 

  11. Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett. 2011;65:1882–4.

    Article  CAS  Google Scholar 

  12. Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc. 2001;123:12798–801.

    Article  CAS  Google Scholar 

  13. Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Oh SJ. Shape evolution of single-crystalline iron oxide nanocrystals. J Am Chem Soc. 2004;126:1950–1.

    Article  CAS  Google Scholar 

  14. Cozzoli PD, Snoeck E, Garcia MA, Giannini C, Guagliardi A, Cervellino A, Gozzo F, Hernando A, Achterhold K, Ciobanu N, Parak FG, Cingolani R, Manna L. Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals. Nano Lett. 2009;6:1966–72.

    Article  Google Scholar 

  15. Haviv AH, Greneche J-M, Lellouche J-P. Aggregation control of hydrophilic maghemite (γ-Fe2O3) nanoparticles by surface doping using cerium atoms. J Am Chem Soc. 2010;132:12519–21.

    Article  CAS  Google Scholar 

  16. Utech S, Scherer C, Maskos M. Multifunctional, multicompartment polyorganosiloxane magnetic nanoparticles for biomedical applications. J Magn Magn Mater. 2009;321:1386–8.

    Article  CAS  Google Scholar 

  17. Rajamathi M, Ghosh M, Seshadri R. Hydrolysis and amine-capping in a glycol solvent as a route to soluble maghemite γ-Fe2O3 nanoparticles. Chem Commun. 2002;10:1152–3.

    Article  Google Scholar 

  18. Wei Y, Lu F, Zhang X, Chen D. Polyol-mediated synthesis of water-soluble LaF3:Yb:Er upconversion fluorescent nanocrystals. Mater Lett. 2007;61:1337–40.

    Article  CAS  Google Scholar 

  19. Zhao L, Chano T, Morikawa S, Saito Y, Shiino A, Shimizu S, Maeda T, Irie T, Aonuma S, Okabe H, Kimura T, Inubushi T, Komatsu N. Hyperbranched polyglycerol-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, size separation, magnetic properties, and biological applications. Adv Funct Mater. 2012;22:5107–17.

    Article  CAS  Google Scholar 

  20. Wan J, Cai W, Meng X, Liu E. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun. 2007;47:5004–6.

    Article  Google Scholar 

  21. Hu F, MacRenaris KW, Waters EA, Liang T, Schultz-Sikma EA, Eckermann AL, Meade TJ. Ultrasmall, water-soluble magnetite nanoparticles with high relaxivity for magnetic resonance imaging. J Phys Chem C. 2009;113:20855–60.

    Article  CAS  Google Scholar 

  22. Jia X, Chen D, Jiao X, Zhai S. Environmentally-friendly preparation of water-dispersible magnetite nanoparticles. Chem Commun. 2009;8:968–70.

    Article  Google Scholar 

  23. Asuha S, Wan HL, Zhao S, Deligeer W, Wu HY, Song L, Tegus O. Water-soluble, mesoporous Fe3O4: synthesis, characterization, and properties. Ceram Int. 2012;38:6579–84.

    Article  CAS  Google Scholar 

  24. Asuha S, Zhao S, Wu HY, Song L, Tegus O. One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe–urea complex and their properties. J Alloys Compd. 2009;472:L23–4.

    Article  CAS  Google Scholar 

  25. Przepiera K, Przepiera A. Kinetics of thermal transformations of precipitated magnetite and goethite. J Therm Anal Calorim. 2001;65:497–503.

    Article  CAS  Google Scholar 

  26. Maity D, Agrawal DC. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater. 2007;308:46–55.

    Article  CAS  Google Scholar 

  27. Alibeigi S, Vaezi MR. Phase transformation of iron oxide nanoparticles by varying the molar ratiao of Fe2+:Fe3+. Chem Eng Technol. 2008;31:1591–6.

    Article  CAS  Google Scholar 

  28. Correa JR, Canetti D, Castillo R, Llópiz JC, Dufour J. Influence of the precipitation pH of magnetite in the oxidation process to maghemite. Mater Res Bull. 2006;41:703–13.

    Article  CAS  Google Scholar 

  29. Zhao S, Wu HY, Song L, Tegus O, Asuha S. Preparation of γ-Fe2O3 nanopowders by direct thermal decomposition of Fe-urea complex: reaction mechanism and magnetic properties. J Mater Sci. 2009;44:926–30.

    Article  CAS  Google Scholar 

  30. Sutka A, Lagzdina S, Kaambre T, Parna R, Kisand V, Kleperis J, Maiorov M, Kikas A, Kuusik I, Jakovlevs D. Study of the structural phase transformation of iron oxide nanoparticles from an Fe2+ ion source by precipitation under various synthesis parameters and temperatures. Mater Chem Phys. 2015;149–150:473–9.

    Article  Google Scholar 

  31. Singh M, Ulbrich P, Prokopec V, Svoboda P, Santava E, Stepanek F. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors. J Solid State Chem. 2013;200:150–6.

    Article  CAS  Google Scholar 

  32. Darezereshki E. Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature. Mater Lett. 2010;64:1471–2.

    Article  CAS  Google Scholar 

  33. Al-Ghamdi AA, Al-Hazmi F, Al-Tuwirqi RM, Alnowaiser F, Al-Hartomy OA, El-Tantawy F, Yakuphanoglu F. Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles. Solid State Sci. 2013;19:111–9.

    Article  CAS  Google Scholar 

  34. Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas L, Martínez B, Sandiumenge F. Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater. 1999;11:3058–64.

    Article  CAS  Google Scholar 

  35. Xia HB, Yi J, Foo PS, Liu B. Facile fabrication of water-soluble magnetic nanoparticles and their spherical aggregates. Chem Mater. 2007;19:4087–97.

    Article  CAS  Google Scholar 

  36. Aghaie-Khafri M, Kakaei Lafdani MH. A novel method to synthesize Cr2O3 nanopowders using EDTA as a chelating agent. Powder Technol. 2012;222:152–9.

    Article  CAS  Google Scholar 

  37. Ercuta A, Chirita M. Highly crystalline porous magnetite and vacancy-ordered maghemite microcrystals of rhombohedral habit. J Cryst Growth. 2013;380:182–6.

    Article  CAS  Google Scholar 

  38. Gilbert B, Katz JE, Denlinger JD, Yin Y, Falcone R, Waychunas GA. Soft X-ray spectroscopy study of the electronic structure of oxidized and partially oxidized magnetite nanoparticles. J Phys Chem C. 2010;114:21994–2001.

    Article  CAS  Google Scholar 

  39. He YP, Miao YM, Li CR, Wang SQ, Cao L, Xie SS, Yang GZ, Zou BS, Burda C. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys Rev B. 2005;71:125411–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 21267016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asuha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wurendaodi, W., Dujiya, J., Zhao, S. et al. Thermal transformation of water-dispersible magnetite nanoparticles. J Therm Anal Calorim 130, 681–688 (2017). https://doi.org/10.1007/s10973-017-6431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6431-0

Keywords

Navigation