Skip to main content
Log in

The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polylactide (PLA) composites based on intumescent flame-retardant (IFR) and organo-modified sepiolite (OSEP) were prepared via direct melt compounding. The uniform dispersion of OSEP in the PLA matrix was observed by TEM, but some agglomerates still existed at the high loading. Tensile results showed that high loading of the conventional IFR led to a reduction in tensile strength of PLA composites; however, replacing a portion of the IFR with modified sepiolite in the PLA matrix improved this result. The thermal degradation temperature of the PLA/IFR/OSEP composites determined by thermogravimetric analysis was lower than that of neat PLA, as a consequence of the catalyzed carbonization induced by the addition of IFR and OSEP. The formulation with 13 mass% IFR and 2 mass% OSEP exhibited the highest LOI value of 32 vol% and also reached UL-94 V-0 rating in the vertical burning tests. Furthermore, the co-addition of IFR and OSEP gave rise to a significant reduction in peak heat release rate (PHRR) and total heat release (THR) of PLA composites during combustion, particularly in the case of PLA/IFR13/OSEP2 (82% reduction in PHRR and 69% in THR). The excellent fire resistance of PLA/IFR13/OSEP2 could be attributed to that IFR catalyzed carbonization of PLA to form the char, while OSEP resulted in further stabilization in the charred layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tham WL, Poh BT, Mohd Ishak ZA, Chow WS. Transparent poly(lactic acid)/halloysite nanotube nanocomposites with improved oxygen barrier and antioxidant properties. J Therm Anal Calorim. 2016;126:1331–7.

    Article  CAS  Google Scholar 

  2. Tang G, Wang X, Zhang R, Wang BB, Hong NN, Hu Y, Song L, Gong XL. Effect of rare earth hypophosphite salts on the fire performance of biobased polylactide composites. Ind Eng Chem Res. 2013;52:7362–72.

    Article  CAS  Google Scholar 

  3. Raquez JM, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Prog Polym Sci. 2013;38:1504–42.

    Article  CAS  Google Scholar 

  4. Moraczewski K. Effect of metallization time on thermal stability of copper-plated polylactide. J Therm Anal Calorim. 2017;. doi:10.1007/s10973-017-6382-5.

    Google Scholar 

  5. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.

    Article  CAS  Google Scholar 

  6. Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002;27:1123–63.

    Article  Google Scholar 

  7. Nishida H, Fan Y, Mori T, Oyagi N, Shirai Y, Endo T. Feedstock recycling of flame-resisting poly (lactic acid)/aluminum hydroxide composite to l,l-lactide. Ind Eng Chem Res. 2005;44:1433–7.

    Article  CAS  Google Scholar 

  8. Chapple S, Anandjiwala R, Ray SS. Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites. J Therm Anal Calorim. 2013;113:703–12.

    Article  CAS  Google Scholar 

  9. Tang G, Wang X, Xing WY, Zhang P, Wang BB, Hong NN, Yang W, Song L, Hu Y. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res. 2012;51(37):12009–16.

    Article  CAS  Google Scholar 

  10. Bocz K, Szolnoki B, Marosi A, Tábi T, Wladyka-Przybylak M, Marosi G. Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym Degrad Stab. 2014;106:63–73.

    Article  CAS  Google Scholar 

  11. Yuan SS, Chen WY, Liu GS. Synergistic effect of THEIC-based charring agent on flame retardant properties of polylactide. J Appl Polym Sci. 2015;132:41218.

    Article  Google Scholar 

  12. Ke CH, Li J, Fang KY, Zhu QL, Zhu J, Yan Q, Wang YZ. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab. 2010;95:763–70.

    Article  CAS  Google Scholar 

  13. Li SM, Yuan H, Yu T, Yuan W, Ren J. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polym Adv Technol. 2009;20:1114–20.

    Article  CAS  Google Scholar 

  14. Bocz K, Domonkos M, Igricz T, Kmetty Á, Bárány T, Marosi G. Flame retarded self-reinforced poly(lactic acid) composites of outstanding impact resistance. Compos A. 2015;70:27–34.

    Article  CAS  Google Scholar 

  15. Wang DY, Leuteritz A, Wang YZ, Wagenknecht U, Heinrich G. Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polym Degrad Stab. 2010;95:2474–80.

    Article  CAS  Google Scholar 

  16. Xuan SY, Hu Y, Song L, Wang X, Yang HY, Lu HD. Synergistic effect of polyhedral oligomeric silsesquioxane on the flame retardancy and thermal degradation of intumescent flame retardant polylactide. Combust Sci Technol. 2012;184:456–68.

    Article  CAS  Google Scholar 

  17. Wang X, Xuan SY, Song L, Yang HY, Lu HD, Hu Y. Synergistic effect of POSS on mechanical properties, flammability, and thermal degradation of intumescent flame retardant polylactide composites. J Macromol Sci B. 2012;51:255–68.

    Article  CAS  Google Scholar 

  18. Song L, Xuan SY, Wang X, Hu Y. Flame retardancy and thermal degradation behaviors of phosphate in combination with POSS in polylactide composites. Thermochim Acta. 2012;527:1–7.

    Article  CAS  Google Scholar 

  19. Liu MT, Pu MF, Ma HW. Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Compos Sci Technol. 2012;72:1508–14.

    Article  CAS  Google Scholar 

  20. Cui WW, Zhang HZ, Xia YP, Zou YJ, Xiang CL, Chu HL, Qiu SJ, Xu F, Sun LX. Preparation and thermophysical properties of a novel formstable CaCl2·6H2O/sepiolite composite phase change material for latent heat storage. J Therm Anal Calorim. 2017;. doi:10.1007/s10973-017-6170-2.

    Google Scholar 

  21. Chen HX, Lu HZ, Zhou Y, Zheng MS, Ke CM, Zeng DL. Study on thermal properties of polyurethane nanocomposites based on organo-sepiolite. Polym Degrad Stab. 2012;97:242–7.

    Article  CAS  Google Scholar 

  22. Laoutid F, Persenaire O, Bonnaud L, Dubois P. Flame retardant polypropylene through the joint action of sepiolite and polyamide 6. Polym Degrad Stab. 2013;98:1972–80.

    Article  CAS  Google Scholar 

  23. Fukushima K, Tabuani D, Abbate C, Arena M, Ferreri L. Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polym Degrad Stab. 2010;95:2049–56.

    Article  CAS  Google Scholar 

  24. Hapuarachchi TD, Peijs T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos A. 2010;41:954–63.

    Article  Google Scholar 

  25. Dai J, Li B. Synthesis, thermal degradation, and flame retardance of novel triazine ring-containing macromolecules for intumescent flame retardant polypropylene. J Appl Polym Sci. 2010;116:2157–65.

    CAS  Google Scholar 

  26. Isitman NA, Kaynak C. Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly (methyl methacrylate). Polym Degrad Stab. 2010;95:1523–32.

    Article  CAS  Google Scholar 

  27. Wan CY, Chen BQ. Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites. Nanoscale. 2011;3:693–700.

    Article  CAS  Google Scholar 

  28. Picard E, Espuche E, Fulchiron R. Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci. 2011;53:58–65.

    Article  CAS  Google Scholar 

  29. Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois P. New trends in polylactide (PLA)-based materials: “Green” PLA–calcium sulfate (nano) composites tailored with flame retardant properties. Polym Degrad Stab. 2010;95:374–81.

    Article  CAS  Google Scholar 

  30. Bourbigot S, Fontaine G, Gallos A, Bellayer S. Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym Adv Technol. 2011;22:30–7.

    Article  CAS  Google Scholar 

  31. Katiyar V, Gerds N, Koch CB, Risbo JH, Hansen CB, Plackett D. Melt processing of poly(l-lactic acid) in the presence of organo modified anionic or cationic clays. J Appl Polym Sci. 2011;122:112–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported National Natural Science Fund of China (Nos. 51403004 and U1460106), Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUG160607), the Start-Up Fund of Jiaxing University (70515039) and Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education (KFKT03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Tang or Keqing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Deng, D., Chen, J. et al. The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites. J Therm Anal Calorim 130, 763–772 (2017). https://doi.org/10.1007/s10973-017-6425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6425-y

Keywords

Navigation