Skip to main content
Log in

Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of platy and tubular nanofillers (NF) in combination with thermoplastic polyurethane (TPU) on cold non-isothermal crystallization (NIC) of poly(lactic acid) (PLA) was studied by differential scanning calorimetry. The data were processed using a recently proposed method of evaluating NIC kinetics. The results indicate that the NF/TPU combination leads to crystallization behaviour of the PLA matrix which is dissimilar from that of the NF-free blend and neat PLA. Addition of organophilized montmorillonite (C30) results in a dual effect on PLA crystallinity—stimulation at lower concentrations and suppression at higher loadings. In the case of halloysite nanotubes (HNT), this effect is practically absent. Crystallinity of injection-moulded samples is significantly increased by cold NIC. This indicates a synergy originating in a complex effect of NF/TPU, e.g. NF-induced changes in morphology and interphase parameters supporting the solid annealing process. TPU partially eliminates negative effect of high NF contents on cold crystallization rate. This effect is more marked in the remelted samples where the rate increases for all NF loadings. This is probably caused by absence of as-prepared crystallites in combination with higher mobility of PLA chains due to presence of TPU. The observed differences between C30 and HNT could be attributed to differences in size, shape, and specific surface. The results indicate that synergistic and antagonistic effects of NF/polymeric modifiers on mechanical and other material parameters are also significantly determined by the effects on crystallization of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Najafi N, Heuzey MC, Carreau PJ. Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polym Eng Sci. 2013;53:1053–64.

    Article  CAS  Google Scholar 

  2. Jacobsen S, Fritz HG. Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci. 1999;39:1303–10.

    Article  CAS  Google Scholar 

  3. Raquez JM, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Prog Polym Sci. 2013;38:1504–42.

    Article  CAS  Google Scholar 

  4. Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B. Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys. 2011;212:613–26.

    Article  CAS  Google Scholar 

  5. Tham WL, Mohd Ishak ZA, Chow WS. Mechanical and thermal properties enhancement of poly(lactic acid)/halloysite nanocomposites by maleic-anhydride functionalized rubber. J Macromol Sci B Phys. 2014;53:371–82.

    Article  CAS  Google Scholar 

  6. Balakrishnan H, Masoumi I, Yussuf AA, Imran M, Hassan A, Wahit MU. Ethylene copolymer toughened polylactic acid. Polym Plast Technol Eng. 2012;51:19–27.

    Article  CAS  Google Scholar 

  7. Chow WS, Leu YY, Mohd Ishak ZA. Poly(lactic acid) nanocomposites with improved impact and thermal properties. J Compos Mater. 2014;48:2155–63.

    Article  Google Scholar 

  8. Singla RK, Maiti SN, Ghosh AKJ. Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes. J Mater Sci. 2016;51:10278–92.

    Article  CAS  Google Scholar 

  9. Rashmi B, Prashantha K, Lacrampe M, Krawczak P. Toughening of poly (lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes. Express Polym Lett. 2015;9:721–35.

    Article  CAS  Google Scholar 

  10. Feng Y, Han-Xiong H. Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym Test. 2015;45:107–13.

    Article  Google Scholar 

  11. Kelnar I, Kratochvíl J, Fortelný I, Kaprálková L, Zhigunov A, Kotrisová M, Khunová V, Nevoralová M. Influence of clay-nanofiller geometry on the structure and properties of poly(lactic acid)/thermoplastic polyurethane nanocomposites. RSC Adv. 2016;6:30755–62.

    Article  CAS  Google Scholar 

  12. Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Rulmont A, Dubois P. Plasticized polylactide/organo-clay nanocomposites by in situ intercalative polymerization. Macromol Chem Phys. 2005;206:484–98.

    Article  CAS  Google Scholar 

  13. As’habi L, Jafari SH, Khonakdar HA, Häussler L, Wagenknecht U, Heinrich G. Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: synergistic role of LLDPE and clay increase of PLA mobility. Thermochim Acta. 2013;565:102–13.

    Article  Google Scholar 

  14. Pluta M. Melt compounding of polylactide/organoclay: structure and properties of nanocomposites. J Polym Sci B Polym Phys. 2006;44:3392–405.

    Article  CAS  Google Scholar 

  15. Wu DF, Wu L, Wu LF, Xu B, Zhang YS, Zhang M. Nonisothermal cold crystallization behaviour and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys. 2007;45:1100–13.

    Article  CAS  Google Scholar 

  16. Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly (butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2015;119:635–42.

    Article  CAS  Google Scholar 

  17. Gamez-Perez J, Nascimento L, Bou JJ, Franco-Urquiza E, Santana OO, Carrasco F, Maspoch ML. Influence of crystallinity on the fracture toughness of poly(lactic acid)/montmorillonite nanocomposites prepared by twin-screw extrusion. J Appl Polym Sci. 2011;120:896–905.

    Article  CAS  Google Scholar 

  18. Picard E, Espuche E, Fulchiron R. Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci. 2011;53:58–65.

    Article  CAS  Google Scholar 

  19. Karami S, Lafleur PG. Role of chain dynamics and topological confinements in cold crystallization of PLA-clay nanocomposites. Polym Eng Sci. 2015;55:1310–20.

    Article  CAS  Google Scholar 

  20. Russo P, Cammarano S, Bilotti E, Peijs T, Cerruti P, Acierno D. Physical properties of poly(lactic acid)/clay nanocomposite films: effect of filler content and annealing treatment. J Appl Polym Sci. 2014;131:39798.

    Article  Google Scholar 

  21. Wei T, Pang S, Xu N, Pan L, Zhang Z, Xu R, Ma N, Lin Q. Crystallization behavior and isothermal crystallization kinetics of PLLA blended with ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate. J Appl Polym Sci. 2015;132:41308.

    Google Scholar 

  22. Di Lorenzo ML. The crystallization and melting processes of poly(l-lactic acid). Macromol Symp. 2006;234:176–83.

    Article  Google Scholar 

  23. Courgeneau C, Ducruet V, Avérous L, Grenet J, Domenek S. Non-isothermal crystallization kinetics of Poly(lactide)—effect of plasticizers and nucleating agent. Polym Eng Sci. 2013;53:1085–98.

    Article  Google Scholar 

  24. Myoung SH, Im SS, Kim SH. Non-isothermal crystallization behaviour of PLA/acetylated cellulose nanocrystals/silica nanocomposites. Polym Int. 2016;65:115–24.

    Article  CAS  Google Scholar 

  25. Kaygusuz I, Kaynak C. Influences of halloysite nanotubes on crystallization behavior of polylactide. Plast Rubber Compos. 2015;44:41–9.

    Article  CAS  Google Scholar 

  26. Li Y, Fang H, Zhang D, Bahader A, Zhen B, Xu P, Ding Y. Synergetic effects of PEG arm and ionic liquid moiety contained in the tri-arm star-shaped oligomer on the crystallization behaviors of poly(lactic acid). J Therm Anal Calorim. 2016;125:849–60.

    Article  CAS  Google Scholar 

  27. Mano JF, Wang Y, Viana JC, Denchev Z, Oliveira MJ. Cold crystallization of PLLA studied by simultaneous SAXS and WAXS. Macromol Mater Eng. 2004;289:910–5.

    Article  CAS  Google Scholar 

  28. Raveri F, Mashak A, Nekoomanesh M, Mobedi H. Non-isothermal crystallization behavior and kinetics of poly(L-lactide): effect of L-lactide dimer. Polym Bull. 2013;70:2569–86.

    Article  Google Scholar 

  29. Valapa R, Hussain S, Iyer PK, Pugazhenthi G, Katiyar V. Influence of graphene on thermal degradation and crystallization kinetics of poly(lactic acid). J Polym Res. 2015;22:175.

    Article  Google Scholar 

  30. Valapa R, Hussain S, Iyer PK, Pugazhenthi G, Katiyar V. Non-isothermal crystallization kinetics of sucrose palmitate reinforced poly(lactic acid) bionanocomposites. Polym Bull. 2016;73:21–38.

    Article  CAS  Google Scholar 

  31. Wang L, Wang YN, Huang ZG, Weng YX. Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Mater Des. 2015;66:7–15.

    Article  CAS  Google Scholar 

  32. Papageorgiu GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D. PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta. 2010;511:129–38.

    Article  Google Scholar 

  33. Zhao H, Bian Y, Li Y, Han C, Dong Q, Dong L, Gao Y. Enhancing cold crystallization of poly(L-lactide) by a montmorillonitic substrate favoring nucleation. Thermochim Acta. 2014;588:47–56.

    Article  CAS  Google Scholar 

  34. Kaavessina M, Ali I, Elleithy RH. Crystallization behavior of poly(lactic acid)/elastomer blends. J Polym Res. 2012;19:9818.

    Article  Google Scholar 

  35. Kratochvíl J, Kelnar I. A simple method of evaluating non-isothermal crystallization kinetics in multicomponent polymer systems. Polym Test. 2015;47:79–86.

    Article  Google Scholar 

  36. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  37. Lai SM, Wu SH, Lin GG, Don TM. Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites. Eur Polym J. 2014;52:193–206.

    Article  CAS  Google Scholar 

  38. Li Y, Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol Biosci. 2007;7:921–8.

    Article  CAS  Google Scholar 

  39. Kratochvíl J, Rotrekl J, Kaprálková L, Hromádková J, Kelnar I. Epoxy/poly(ϵ-caprolactone) nanocomposites: effect of transformations of structure on crystallization. J Appl Polym Sci. 2013;130:3197–207.

    Article  Google Scholar 

  40. Fortelný I, Živný A. Coalescence in molten quiescent polymer blends. Polymer. 1995;36:4113–8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Czech Science Foundation (Grant No. 16-03194S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Kratochvíl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kratochvíl, J., Kelnar, I. Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system. J Therm Anal Calorim 130, 1043–1052 (2017). https://doi.org/10.1007/s10973-017-6417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6417-y

Keywords

Navigation