Skip to main content
Log in

The study of processes affecting the radiation resistance of TiO2 powders after heating and modification with SiO2 nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We have investigated the processes occurring within titanium dioxide powders heated and modified by silicon dioxide nanoparticles at 150, 400, and 800 °C. It has been figured out that the mentioned modification stipulates the increase in the powders’ radiation resistance. While investigating, we employed methods of the near-/mid-infrared regions spectrophotometry, derivatography, and mass spectrometry. The research results show that the increase in the radiation resistance at the heating is stipulated by a number of factors, namely (1) the desorption of the physically/chemically bound gases, (2) upfilling of the released bonds with the oxygen molecules, and (3) the improvement of titanium dioxide stoichiometry on the surface. The after-modification radiation resistance increases excessively (as opposed to the heating) due to the fact that the electron–hole pairs relaxate on the nanoparticles, which precipitate onto the surface of titanium dioxide powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dobrzanski LA, Szindler M. Sol gel TiO2 antireflection coatings for silicon solar cells. J Achiev Mater Manuf Eng. 2012;52(1):7–14.

    Google Scholar 

  2. Palkovská M, Slovák V, Šubrt J, et al. Investigation of the thermal decomposition of a new titanium dioxide material. J Therm Anal Calorim. 2016;125:1071–8.

    Article  Google Scholar 

  3. Santhosh MV, Deepu DR, Geethu R, Rajeev Kumar K, Sudha Kartha C, Vijayakumar KP. Spray pyrolysed microporous TiO2 thin films by optimization of substrate temperature for ‘all sprayed’ solar cells. Semicond Sci Technol. 2014;29(11):115026–32.

    Article  Google Scholar 

  4. Keshavarz M, Zebarjad SM, Daneshmanesh H, et al. On the role of TiO2 nanoparticles on thermal behavior of flexible polyurethane foam sandwich panels. J Therm Anal Calorim. 2017;127:2037–48.

    Article  CAS  Google Scholar 

  5. Haddadi SA, Kardar P, Abbasi F, et al. Effects of nano-silica and boron carbide on the curing kinetics of resole resin. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5951-3.

    Google Scholar 

  6. Li C, Lv J, Zhou B, Liang Z. Influence of annealing atmosphere on optical properties of Al-doped ZnO powders. Phys Status Solidi A. 2012;8(209):1538–42.

    Article  Google Scholar 

  7. Mikhailov MM, Utebekov TA, Neshchimenko VV. Radiation stability of powders in mixtures with Al2O3 nanoparticles. Radiat Eff Defects Solids. 2013;168(2):106–14.

    Article  CAS  Google Scholar 

  8. Mikhailov MM, Vlasov VA, Yuryev SA, Neshchimenko VV, Shcherbina VV. Optical properties and radiation stability of TiO2 powders modified by Al2O3, ZrO2, SiO2, TiO2, ZnO, and MgO nanoparticles. Dyes Pigments. 2015;123:72–7.

    Article  CAS  Google Scholar 

  9. Mikhailov MM, Neshchimenko VV, Li C. Optical properties of zinc oxide powders modified by nanoparticles ZrO2, Al2O3, TiO2, SiO2, CeO2 and Y2O3 with various concentrations. Dyes Pigments. 2016;131:256–63.

    Article  CAS  Google Scholar 

  10. Mikhailov MM, Remnev GE, Dzhabiev SA, Sazonov RV. Efficiency of the radiation stability increase in various regions of the absorption spectrum of the TiO2 coatings-based powders modified by SiO2 nanoparticles. Russ Phys J. 2012;55(7):852–4.

    Article  CAS  Google Scholar 

  11. Remnev GE, Furman EG, Pushkarev AI, Karpuzov SB, Kondrat’ev NA, Goncharov DV. A high-current pulsed accelerator with a matching transformer. Instrum Exp Tech+. 2004;47(3):394–8.

    Article  Google Scholar 

  12. Kositsyn LG, Mikhailov MM, Kuznetsov NY, Dvoretskii MI. Apparatus for study of diffuse-reflection and luminescence spectra of solids in vacuum. Instrum Exp Tech NY. 1985;28(4 pt 2):929–32.

    Google Scholar 

  13. Chen J, Lin L-B, Jing F-Q. Theoretical study of F-type color center in rutile TiO2. J Phys Chem Solids. 2001;62(7):1257–62.

    Article  CAS  Google Scholar 

  14. Gao Y, Masuda Y, Peng Z, Yonezawa T, Koumoto K. Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J Mater Chem. 2003;13:608.

    Article  CAS  Google Scholar 

  15. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 2008.

    Book  Google Scholar 

  16. Klingenberg B, Vannice MA. Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders. Chem Mater. 1996;8:27–55.

    Article  Google Scholar 

  17. Jiwei Z, Tao Y, Liangying Z, Xi Y. The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol-gel process. Ceram Int. 1999;25(7):667–70.

    Article  Google Scholar 

  18. Nur H. Modification of titanium surface species of titania by attachment of silica nanoparticles. Mat Sci Eng B. 2006;133(1–3):49–54.

    Article  CAS  Google Scholar 

  19. Blanco M, Coello J, Ityrriaga H, Maspoch S. Near-infrared spectroscopy in the pharmaceutical industry. Analyst. 1999;124:135–50.

    Article  Google Scholar 

  20. Blanco M, Vilaroya I. NIR spectroscopy: a rapid-response analytical tool. Trends Anal Chem. 2002;21:240–50.

    Article  CAS  Google Scholar 

  21. Martins JBL, Longo E, Salmon ODR, et al. The interaction of H2, CO, CO2, H2O and NH3 on ZnO surface: an ONIOM Study. Chem Phys Lett. 2004;400:481–6.

    Article  CAS  Google Scholar 

  22. Spiridonov KN, Krylov OV. Types of absorbed oxygen on oxide catalysts’ surface. Issues Kinet Catal. 1975;16:7–12 (Moscow: Nauka).

    CAS  Google Scholar 

  23. Mikhailov MM, Sokolovskii AN. Photostability of coatings based on TiO2 (Rutile) doped with potassium peroxoborate. J Spacecr Rockets. 2006;43(2):451–5.

    Article  CAS  Google Scholar 

  24. Ahmad A, Awan GH, Aziz S. Synthesis and applications of TiO2 nanoparticles. In: Pakistan engineering congress, 70th annual session proceedings; 2006. p. 403–12.

  25. Sikong L, Damchan J, Kooptarnond K, Niyomwas S. Effect of doped SiO2 and calcinations temperature on phase transformation of TiO2 photocatalyst prepared by sol-gel method. Songklanakarin J Sci Technol. 2008;30(3):385–91.

    Google Scholar 

  26. Radecka M, Zajrzewska K, Czternastek H, Stapinski T. The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films. Appl Surf. 1993;65/66:227.

    Article  Google Scholar 

  27. Hou Y-Q, Zhuang D-M, Zhang G, Zhao M, Wu M-S. Influence of annealing temperature on the properties of titanium oxide thin film. Appl Surf Sci. 2003;218:97.

    Article  CAS  Google Scholar 

  28. Meng L-J, Andridchky M, Dos Santos MP. The effect of substrate temperature on the properties of sputtered titanium oxide films. Appl Surf Sci. 1993;65/66:235.

    Article  Google Scholar 

Download references

Acknowledgements

The work was conducted with the support of Goszadanie [Federal Project] No. 1.8575.2017/БЧ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Yuryev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, M.M., Yuryev, S.A., Remnev, G.E. et al. The study of processes affecting the radiation resistance of TiO2 powders after heating and modification with SiO2 nanoparticles. J Therm Anal Calorim 130, 671–680 (2017). https://doi.org/10.1007/s10973-017-6407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6407-0

Keywords

Navigation