Skip to main content
Log in

Deposition of NiO on 3 mol% yttria-stabilized zirconia and Sr0.96Y0.04TiO3 materials by impregnation method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main purpose of this work was the synthesis of composite materials by deposition of nickel oxide on 3 mol% yttria-stabilized zirconia (3 mol% Y2O3–97 mol% ZrO2–YSZ) and Sr0.96Y0.04TiO3 (4 mol% Y-doped strontium titanate—SYTO) supports. Yttria-stabilized zirconia and yttrium-doped strontium titanate were obtained by modified citrate method. The deposition of nickel oxide was performed by impregnation method. All materials were impregnated with proper amount of nickel(II) nitrate aqueous solution to receive the 1 and 5 mass% of nickel in the final composite. The temperature-programmed reduction (TPR) was applied to analyze the reduction mechanism of deposited NiO. Three forms of nickel oxide: non-stoichiometric NiO1+x, hexagonal and cubic are postulated on the base of the TPR profiles and analysis of bonds length in nickel oxides structures. Moreover, TPR analysis shows that support strongly affects the reduction mechanism as a consequence of various interactions between NiO and YSZ/SYTO. In the case of YSZ, the nickel oxide reveals the tendency to deposit on the support surface, while using SYTO as the support, nickel oxide exhibits significant ability to react with doped strontium titanate and what is more important nickel incorporates into Sr0.96Y0.04TiO3 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bačić I, Mandić V, Ćurković L, Otmačić-Ćurković H, Kurajica S. Thermal and structural studies of sol–gel-derived yttria-doped ZrO2 nanoparticles. J Therm Anal Calorim. 2017;127:197–206.

    Article  Google Scholar 

  2. Skalar T, Jelen E, Novosel B, Marinsěk M. Oxidation of carbon deposits on anode material Ni–YSZ in solid oxide fuel cells. J Therm Anal Calorim. 2017;127:265–71.

    Article  CAS  Google Scholar 

  3. Drożdż E, Wyrwa J, Schneider K, Rękas M. Electrical properties of silica-doped 3 mol% yttria-stabilized tetragonal zirconia. J Mater Sci. 2017;52:674–85.

    Article  Google Scholar 

  4. Si J, Liu G, Liu J, Zhao L, Li S, Guanab Y, Liu Y. Ni nanoparticles highly dispersed on ZrO2 and modified with La2O3 for CO methanation. RSC Adv. 2016;6:12699.

    Article  CAS  Google Scholar 

  5. Zhigachev AO, Umrikhin AV, Golovin YI. The effect of calcia content on phase composition and mechanical properties of Ca-TZP prepared by high-energy milling of baddeleyite. Ceram Int. 2015;41:13804–9.

    Article  CAS  Google Scholar 

  6. Drożdż E. Synthesis, structural characterization, electrical properties and chemical stability of a (ZrO2)0.97(Y2O3)0.03−x(MgO)2x solid solution. RSC Adv. 2016;6:84752.

    Article  Google Scholar 

  7. Wu H, La Parola V, Pantaleo G, Puleo F, Venezia AM, Liotta LF. Ni-based catalysts for low temperature methane steam. Catalysts. 2013;3:563–83.

    Article  CAS  Google Scholar 

  8. Chen T, Wang WG, Miao H, Li T, Xu Ch. Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas. J Power Sources. 2011;196:2461–8.

    Article  CAS  Google Scholar 

  9. Wang Y, Wu R, Zhao Y. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen rich gases. Catal Today. 2010;158:470–4.

    Article  CAS  Google Scholar 

  10. Takenaka S. Complete removal of carbon monoxide in hydrogen rich gas stream through methanation over supported metal catalysts. Int J Hydrogen Energy. 2004;29:1065–73.

    Article  CAS  Google Scholar 

  11. Van Keulen ANJ, Seshan K, Hoebinik JHBJ, Ross JRH. TAP investigations of the CO2 reforming of CH4 over Pt/ZrO2. J Catal. 1997;166:306–14.

    Article  Google Scholar 

  12. Hou Z, Chen P, Fang H, Zheng X, Yashima T. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int J Hydrogen Energy. 2006;31:555–61.

    Article  CAS  Google Scholar 

  13. Drożdż E, Łącz A, Koleżyński A, Mikuła A, Mars K. Experimental and theoretical studies of structural and electrical properties of highly porous Sr1−xYxTiO3. Solid State Ion. 2017;302:173–9.

    Article  Google Scholar 

  14. Horikiri F, Han LQ, Kaimai A, Otake T, Yashiro K, Kawada T, Mizusaki J. The influence of grain boundary on the conductivity of donor doped SrTiO3. Solid State Ion. 2006;177:2555–9.

    Article  CAS  Google Scholar 

  15. Takehira K, Shishido T, Konda M. Partial oxidation of CH4 over Ni/SrTiO3 catalysts prepared by solid-phase crystallization method. J Catal. 2002;207:307–16.

    Article  CAS  Google Scholar 

  16. Drożdż E, Łańcucki Ł, Łącz A. Synthesis, microstructural properties and chemical stability of 3DOM structures of Sr1−xYxTiO3. J Therm Anal Calorim. 2016;125:1225–31.

    Article  Google Scholar 

  17. Drożdż-Cieśla E, Wyrwa J, Broś J, Rękas M. Structural, microstructural, thermal and electrical properties of Ni/YSZ cermet materials. J Therm Anal Calorim. 2012;108:1051–7.

    Article  Google Scholar 

  18. Krikorian OH. Thermal expansion of high temperature materials, UCRL-6132 Chemistry-General TID-4500, UC-4, 15th ed. 1960.

  19. Małecka B, Łącz A, Drożdż E, Małecki A. Thermal decomposition of d-metal nitrates supported on alumina. J Therm Anal Calorim. 2015;119:1053–61.

    Article  Google Scholar 

  20. Li B, Su W, Wang X, Wang X. Alumina supported Ni and Co catalysts modified by Y2O3 via different impregnation strategies: Comparative analysis on structural properties and catalytic performance in methane reforming with CO2. Int J Hydrogen Energy. 2016;41:14732–46.

    Article  CAS  Google Scholar 

  21. Bentaleba F, Chea M, Dubreuilc AC, Thomazeauc C, Marceau E. Influence of organic additives on the properties of impregnation solutions and on nickel oxide particle size for Ni/Al2O3 catalysts. Catal Today. 2014;235:250–5.

    Article  Google Scholar 

  22. Yang W, Liu H, Li Y, He D. Interaction mechanism of Ni(NO3)2·6H2O and P123 in preparing highly-dispersed Ni/SBA-15 catalytic materials. Microporous Mesoporous Mater. 2016;228:174–81.

    Article  CAS  Google Scholar 

  23. Baktash E, Littlewood P, Pfrommer J, Schomäcker R, Driess M, Thomas A. Controlled formation of nickel oxide nanoparticles on mesoporous silica using molecular Ni4O4 clusters as precursors: enhanced catalytic performance for dry reforming of methane. Chem Cat Chem. 2015;7:1280–4.

    CAS  Google Scholar 

  24. Tanggarnjanavalukul Ch, Donphai W, Witoon T, Chareonpanich M, Limtrakul J. Deactivation of nickel catalysts in methane cracking reaction: effect of bimodal meso–macropore structure of silica support. Chem Eng Process. 2015;262:364–71.

    CAS  Google Scholar 

  25. Martinez LMT, Montes de Correa C, Odriozola JA, Centeno MA. Synthesis and characterization of sol–gel zirconia supported Pd and Ni catalysts. Catal Today. 2005;107–108:800–8.

    Article  Google Scholar 

  26. Yamasaki M, Habazaki H, Yoshida T, Akiyama E, Kawashima A, Asami K, Hashimoto K, Komori M, Shimamura K. Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni–Zr alloy precursors. Appl Catal A Gen. 1997;163:187–97.

    Article  CAS  Google Scholar 

  27. Sayas S, Chica A. Furfural steam reforming over Ni-based catalysts. Influence of Ni incorporation method. Int J Hydrogen Energy. 2014;49:5234–41.

    Article  Google Scholar 

  28. Mo L, Kai K, Leong M, Kawi S. A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane. Catal Sci Technol. 2014;4:2107–20114.

    Article  CAS  Google Scholar 

  29. Takehira K, Shishido T, Wang P, Kosaka T, Takaki K. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg–Al hydrotalcite-like anionic clay. J Catal. 2004;221:43–54.

    Article  CAS  Google Scholar 

  30. De Abreua AJ, Lucrédiob AF, Assaf EM. Ni catalyst on mixed support of CeO2–ZrO2 and Al2O3: Effect of composition of CeO2–ZrO2 solid solution on the methane steam reforming reaction. Fuel Process Technol. 2012;102:140–5.

    Article  Google Scholar 

  31. Hu Ch-W, Yao J, Yang H-Q, Chen Y, Tian A-M. On the inhomogeneity of low nickel loading methanation catalyst. J Catal. 1997;166:1–7.

    Article  CAS  Google Scholar 

  32. Lu H, Yang X, Gao G, Wang K, Shi Q, Wang J, Han Ch, Liu J, Tong M, Liang X, Li Ch. Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation. Int J Hydrogen Energy. 2014;39:18894–907.

    Article  CAS  Google Scholar 

  33. Mori H, Wen Ch, Otomo J, Eguchi K, Takahashi H. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique. Appl Catal A Gen. 2003;245:79–85.

    Article  CAS  Google Scholar 

  34. Urasaki K, Tokunaga K, Sekine Y, Kikuchi E, Matsukata M. Hydrogen production by steam reforming of ethanol using cobalt and nickel catalysts supported on strontium titanate. Chem Lett. 2005;34:668–9.

    Article  CAS  Google Scholar 

  35. Ikebe T, Muroyama H, Matsui T, Eguchi K. Fabrication of redox tolerant anode with an electronic conductive oxide of Y-doped SrTiO3. J Electrochem Soc. 2010;157:B970–4.

    Article  CAS  Google Scholar 

  36. Karczewski J, Bochentyn B, Molin S, Gazda M, Jasinski P, Kusz B. Solid oxide fuel cells with Ni-infiltrated perovskite anode. Solid State Ion. 2012;221:11–4.

    Article  CAS  Google Scholar 

  37. Sluchinskayaa IA, Lebedeva A, Erko IA. Structural position and charge state of nickel in SrTiO3. Phys Solid State. 2014;56:442–7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Polish National Science Centre, Grant No. 2014/14/E/ST5/00763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Drożdż.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drożdż, E., Łącz, A. & Spałek, Z. Deposition of NiO on 3 mol% yttria-stabilized zirconia and Sr0.96Y0.04TiO3 materials by impregnation method. J Therm Anal Calorim 130, 291–299 (2017). https://doi.org/10.1007/s10973-017-6406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6406-1

Keywords

Navigation