Skip to main content
Log in

Impact of calcium chloride concentration on structure and thermal property of Thai silk fibroin films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Regenerated Thai silk fibroin films were successfully fabricated using a novel calcium chloride–formic acid solution system. Different concentrations of calcium chloride (1.0, 1.5, 2.0, 3.0, 4.0, and 6.0 mass% in formic acid) could be embedded into the silk structure, and their glass transition temperature (T g), specific heat (C p), and thermal stability were studied and compared by the methods including scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and step-scan DSC (SSDSC). The results showed that with the increase in the CaCl2 content during film fabrication, the ΔC p value of the final samples in the glass transition region gradually increased, while T g and the thermal stability decreased, suggesting that a more non-crystalline structure formed in the sample produced with a high concentration of CaCl2. These findings offer a new strategy for the fabrication of biocompatible silk materials with different structures, and it can be used for different silk fibroins for various biomaterial applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin N, Liu XY. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles. Chem Soc Rev. 2015;44:7881–915.

    Article  CAS  Google Scholar 

  2. Santos-Pinto JRAD, Garcia AMC, Arcuri HA, Esteves FG, Salles HC, Lubec G, Palma MS. Silkomics: insight into the silk spinning process of spiders. J Proteome Res. 2016;15:1179–93.

    Article  Google Scholar 

  3. Mitropoulos AN, Marelli B, Ghezzi CE, Applegate MB, Partlow BP, Kaplan DL, Omenetto FG. Transparent, nanostructured silk fibroin hydrogels with tunable mechanical properties. ACS Biomater Sci Eng. 2015;1:964–70.

    Article  CAS  Google Scholar 

  4. Pal S, Kundu J, Talukdar S, Thomas T, Kundu SC. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm samia ricini. Macromol Biosci. 2013;13:1020–35.

    Article  CAS  Google Scholar 

  5. Karve KA, Gil ES, McCarthy SP, Kaplan DL. Effect of β-sheet crystalline content on mass transfer in silk films. J Membr Sci. 2011;383:44–9.

    Article  CAS  Google Scholar 

  6. Rajkhowa R, Levin B, Redmond SL, Li LH, Wang L, Kanwar JR, Atlas MD, Wang X. Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions. J Biomed Mater Res Part A. 2011;97A:37–45.

    Article  CAS  Google Scholar 

  7. Freddi G, Pessina G, Tsukada M. Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Int J Biol Macromol. 1999;24:251–63.

    Article  CAS  Google Scholar 

  8. Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, De Long HC, Mantz RA. Dissolution and regeneration of bombyx mori silk fibroin using ionic liquids. J Am Chem Soc. 2004;126:14350–1.

    Article  CAS  Google Scholar 

  9. Rockwood DN, Preda RC, Yücel T, Wang XQ, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6:1612–31.

    Article  CAS  Google Scholar 

  10. Gogoi D, Choudhury AJ, Chutia J, Pal AR, Khan M, Choudhury M, Pathak P, Das G, Patil DS. Development of advanced antimicrobial and sterilized plasma polypropylene grafted muga (Antheraea assama) silk as suture biomaterial. Biopolymers. 2014;101:355–65.

    Article  CAS  Google Scholar 

  11. Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL. Protein-based composite materials. Mater Today. 2012;15(5):208–15.

    Article  CAS  Google Scholar 

  12. Li LL, Zhou W, Dai FY, Mei XX, Fan CQ, Yang X, Wu YZ. Preparation and characterization of silk fibroin treated with different calcium-alcohol solution. China Biotechnol. 2012;32(4):28–32.

    Google Scholar 

  13. Hardy JG, Scheibel TR. Composite materials based on silk proteins. Prog Polym Sci. 2010;35:1093–115.

    Article  CAS  Google Scholar 

  14. Sun BB, Wu T, Wang J, Li D, Wang J, Gao Q, Bhutto MA, El-Hamshary H, Al-Deyab SS, Mo XM. Polypyrrole-coated poly(l-lactic acid-co-ecaprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. J Mater Chem B. 2016;4:6670–9.

    Article  CAS  Google Scholar 

  15. Chen X, Knighta DP, Shao ZZ, Vollrath F. Regenerated Bombyx, silk solutions studied with rheometry and FTIR. Polymer. 2001;42(25):09969–74.

    Article  CAS  Google Scholar 

  16. Putthanarat S, Zarkoob S, Magoshi J, Chen JA, Eby RK, Stone M, Adamse WW. Effect of processing temperature on the morphology of silk membranes. Polymer. 2002;43(12):3405–13.

    Article  CAS  Google Scholar 

  17. Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL. Structure and properties of silk hydrogels. Biomacromol. 2004;5(3):786–92.

    Article  CAS  Google Scholar 

  18. Zhang F, Lu Q, Yue XX, Zuo BQ, Qin MD, Li F, Kaplan DL, Zhang XG. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent. Acta Biomater. 2014;12:139–45.

    Article  Google Scholar 

  19. Wang F, Wolf N, Rocks EM, Vuong T, Hu X. Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films. J Therm Anal Calorim. 2015;122(3):1069–76.

    Article  CAS  Google Scholar 

  20. Sheng SJ, Hu X, Wang F, Ma QY, Gu MF. Mechanical and thermal property characterization of poly-l-lactide(PLLA) scaffold developed using pressure-controllable green foaming technology. Mater Sci Eng C. 2015;49:612–22.

    Article  CAS  Google Scholar 

  21. Pielichowski K, Flejtuch K, Pielichowski J. Step-scan alternating DSC study of melting and crystallisation in poly(ethylene oxide). Polymer. 2004;45(4):1235–42.

    Article  CAS  Google Scholar 

  22. Sandor M, Bailey NA, Mathiowitz E. Characterization of polyanhydride microsphere degradation by DSC. Polymer. 2002;43(2):279–88.

    Article  CAS  Google Scholar 

  23. Zhang F, You XR, Dou H, Liu Z, Zuo BQ, Zhang XG. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. ACS Appl Mater Interfaces. 2015;7:3352–61.

    Article  CAS  Google Scholar 

  24. Zhang J, Rajkhowa R, Li JL, Liu SY, Wang XG. Silkworm cocoon as natural material and structure for thermal insulation. Mater Des. 2013;49:842–9.

    Article  Google Scholar 

  25. Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, Schick C. Beating the heat-fast scanning melts silk beta sheet crystals. Sci Rep. 2013;3:1130–7.

    Article  Google Scholar 

  26. Hu X, Kaplan D, Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules. 2006;39:6161–70.

    Article  CAS  Google Scholar 

  27. Murase R. Physico-chemical researches on silk:(V). On the “salt-contraction” of nitrated silk fibroin. Sen-ito Kogyo. 1950;6:334–7.

    CAS  Google Scholar 

  28. He Z, Dunker AK, Wesson CR, Trumble WR. Ca(2 +)–induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site. J Biol Chem. 1993;268(33):24635–41.

    CAS  Google Scholar 

  29. Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424:1057–61.

    Article  CAS  Google Scholar 

  30. Hao RW, Zhang JM, Xu T, Huang L, Yao JR, Chen X, Shao ZZ. Characterization and assembly investigation of a dodecapeptide hydrolyzed from the crystalline domain of Bombyx mori silk fibroin. Polym Chem. 2013;4:3005–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the College of Natural Science Foundation of Jiangsu Province of China (15KJB150018), the Analysis Method and Technology Guide Project of Science and Technology Department of Jiangsu Province, China (JKYB 201401). XH is also supported by Rowan University Start-up Grants, NSF-MRI Program (DMR-1338014) and NSF Materials Eng. and Processing program (CMMI-1561966), USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Xiao Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yu, Hy., Gu, ZG. et al. Impact of calcium chloride concentration on structure and thermal property of Thai silk fibroin films. J Therm Anal Calorim 130, 851–859 (2017). https://doi.org/10.1007/s10973-017-6388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6388-z

Keywords

Navigation