Skip to main content
Log in

The thermal behavior of mixed-layer Aurivillius phase Bi13Fe5Ti6O39

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The mixed-layer perovskite-like compound Bi13Fe5Ti6O39 with Aurivillius phase structure Bim+1Fem−3Ti3O3m+3 (m = 5.5) was synthesized by the solid-state reactions method. The thermal behavior of Bi13Fe5Ti6O39 in the range from 2 to 1450 K was studied by the differential scanning calorimetry, the impedance spectroscopy and the analysis of temperature dependences of the permittivity and magnetization. The temperature of decomposition and the temperatures of phase transitions were determined. It was shown that Bi13Fe5Ti6O39 combines the ferroelectricity with the magnetic ordering below the temperature 173 ± 4 K. The data obtained in thermal measurements showed that the thermal behavior of mixed-layer compound Bi13Fe5Ti6O39 and Aurivillius phases Bim+1Fem−3Ti3O3m+3 with an integer m was analogous. The mechanism of thermal degradation Bi13Fe5Ti6O39 was described as sequential peritectic decomposition into compounds of the same homologous series having a smaller m (m ≤ 5.5). Bi13Fe5Ti6O39 has a semiconductor-like type of conductivity and undergoes high- and low-temperature phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Keeney L, Maity T, Schmidt M, Amann A, Deepak N, Petkov N, Roy S, Pemble ME, Whatmore RW. Magnetic field-induced Ferroelectric switching in multiferroic Aurivillius phase thin films at room temperature. J Am Ceram Soc. 2013;96:2339–57.

    Article  CAS  Google Scholar 

  2. Li J-B, Huang Y-P, Jin H-B, Rao G-H, Liang J-K. Inhomogeneous structure and magnetic properties of Aurivillius ceramics Bi4Bin−3Ti3Fen−3O3n+3. J Am Ceram Soc. 2013;96:3920–5.

    Article  CAS  Google Scholar 

  3. Wang G, Huang Y, Sun Sh, Wang J, Peng R, Lu Y. Layer Effects on the magnetic behaviors of Aurivillius compounds Bin+1Fen–3Ti3O3n+1 (n = 6, 7, 8, 9). J Am Ceram Soc. 2016;99:1318–23.

    Article  CAS  Google Scholar 

  4. Sun Sh, Liu Ch, Wang G, Chen Z, Chen T, Peng R, Lu Y. Structural and physical properties of mixed-layer Aurivillius-type multiferroics. J Am Ceram Soc. 2016;99:3033–8.

    Article  CAS  Google Scholar 

  5. Jartych E, Gaska K, Przewoznik J, Cz Kapusta, Lisinska-Czekaj A, Czekaj D, Surowiec Z. Hyperfine interactions and irreversible magnetic behavior in multiferroic Aurivillius compounds. Nukleonika. 2013;58:47–51.

    CAS  Google Scholar 

  6. Birenbaum AY, Ederer C. Potentially multiferroic Aurivillius phase Bi5FeTi3O15: cation site preference, electric polarization, and magnetic coupling from first principles. Phys Rev B. 2014;90:214109.

    Article  Google Scholar 

  7. Lomanova NA, Semenov VG, Panchuk VV, Gusarov VV. Structural changes in the homologous series of the Aurivillius phases Bin+1Fen−3Ti3O3n+3. J Alloy Comp. 2012;528:103–8.

    Article  CAS  Google Scholar 

  8. Lomanova NA, Semenov VG, Panchuk VV, Gusarov VV. Structural features and stability of the Aurivillius phases Bin+1Fen−3Ti3O3n+3. Dokl Chem. 2012;447:293–5.

    Article  CAS  Google Scholar 

  9. Jartych E, Pikula T, Mazurek M, Lisinska-Czekaj A, Czekaj K, Gaska D, Przewoznik J, Kapusta C, Surowie Z. Antiferromagnetic spin glass-like behavior in sintered multiferroic Aurivillius Bim+1Ti3Fem−3O3m+3 compounds. J Magn Magn Mater. 2013;342:27–34.

    Article  CAS  Google Scholar 

  10. Sun Sh, Liu Ch, Wang G, Chen Z, Chen T, Peng R, Lu Y. Structural and physical properties of mixed-layer Aurivillius-type multiferroics. J Am Ceram Soc. 2016;9:3033–8.

    Article  Google Scholar 

  11. Rao CNR, Raveau B. Transition metal oxides: structure, properties and synthesis of ceramic oxides. New York: Wiley; 1998. p. 74–5.

    Google Scholar 

  12. Morozov MI, Gusarov VV. Synthesis of Am−1Bi2MmO3m+3 compounds in the Bi4Ti3O12–BiFeO3 system. Inorg Mater. 2002;38:723–9.

    Article  CAS  Google Scholar 

  13. Lomanova NA, Morozov MI, Ugolkov VL, Gusarov VV. Properties of Aurivillius phases in the Bi4Ti3O12–BiFeO3 system. Inorg Mater. 2006;42:189–95.

    Article  CAS  Google Scholar 

  14. Lomanova NA, Gusarov VV. Effect of the phase composition of the starting mixture on the formation of the layered perovskite-like compound Bi7Fe3Ti3O21. Russ J Inorg Chem. 2010;55:1541–5.

    Article  CAS  Google Scholar 

  15. Naz S, Durrani SK, Qureshi AH, Hussain MA, Hussain N. Nanosized bismuth titanate (Bi4Ti3O12) system drive through auto-combustion process by using suspension titania (TiO2). J Therm Anal Calorim. 2013;114(2):719–23.

    Article  CAS  Google Scholar 

  16. Lisinska-Czekaj A, Lubina M, Czekaj D, Rerak M, Garbarz-Glos B, Bąk W. Influence of processing conditions on crystal structure of Bi6Fe2Ti3O18 ceramics. Arch Metall Mater. 2016;61:881–6.

    CAS  Google Scholar 

  17. Knyazev AV, Krasheninnikova OV, Smirnova NN, Shushunov AN, Syrov EV, Blokhina AG. Thermodynamic properties and X-ray diffraction of Bi4Ti3O12. J Therm Anal Calorim. 2015;122(2):747–54.

    Article  CAS  Google Scholar 

  18. Lomanova NA, Gusarov VV. Phase states in the Bi4Ti3O12–BiFeO3 section in the Bi2O3–TiO2–Fe2O3 system. Russ J Inorg Chem. 2011;56:616–20.

    Article  CAS  Google Scholar 

  19. Lomanova NA, Gusarov VV. On the limiting thickness of the Perovskite-like block in the Aurivillius phases in the Bi2O3–TiO2–Fe2O3 system. Nanosyst Phys Chem Math. 2011;2:93–101.

    Google Scholar 

  20. Srinivas A, Kumar MM, Suryanarayana SV, Bhimasankaram T. Investigation of dielectric and magnetic nature of Bi7Fe3Ti3O21. Mater Res Bull. 1999;34:989–96.

    Article  CAS  Google Scholar 

  21. Srinivas A, Kim D-W, Hong KS, Suryanarayana SV. Study of magnetic and magnetoelectric measurements in bismuth iron titanate ceramic-Bi8Fe4Ti3O24. Mater Res Bull. 2004;39:55–61.

    Article  CAS  Google Scholar 

  22. Lomanova NA, Pleshakov IV, Volkov MP, Gusarov VV. Magnetic properties of Aurivillius phases Bim+1Fem−3Ti3O3m+3 with m = 5.5, 7, 8. Mater Sci Eng, B. 2016;214:51–6.

    Article  CAS  Google Scholar 

  23. Huang Y, Wang G, Sun Sh, Wang J, Peng R, Lin Y, Zhai X, Fu Z, Lu Y. Observation of exchange anisotropy in single-phase layer-structured oxides with long periods. Sci Rep. 2015;5:15261.

    Article  CAS  Google Scholar 

  24. Smolenskii GA, Isupov VA, Agranovskaya AI. A new family of ferroelectrics (with layered structure). Sov Phys Sol St. 1959;3:169–70.

    Google Scholar 

  25. Isupov VA. Curie temperatures of Am–1Bi2MmO3m+3 layered ferroelectrics. Inorg Mater. 1997;33:936–40.

    CAS  Google Scholar 

  26. Subbanna GN, Guru Row TN, Rao CNR. Structure and dielectric properties of recurrent intergrowth structures formed by the Aurivillius family of bismuth oxides of the formula Bi2An−1BnO3n+3. J Sol St Chem. 1990;86:206–11.

    Article  CAS  Google Scholar 

  27. Li J-B, Huang YP, Rao GH, Liu GY, Luo J. Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18. Appl Phys Lett. 2010;96:222903.

    Article  Google Scholar 

  28. Jiang P, Duan ZH, Xu LP, Zhang XL, Li YW, Hu ZG, Chu JH. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: an interband electronic transition evidence. J Appl Phys. 2014;115:083101–6.

    Article  Google Scholar 

  29. Srinivas A, Suryanarayana SV, Kumar GS, Kumar MM. Magnetoelectric measurements on Bi5Ti3FeO15 and Bi6Fe2Ti3O18. J Phys Condens Mater. 1999;11:3335–9.

    Article  CAS  Google Scholar 

  30. Snedden A, Hervoches CH, Lightfoot P. Ferroelectric phase transition in SrBi2Nb2O9 and Bi5Ti3FeO15: a powder neutron diffraction study. Phys Rev. 2003;67:092102–4.

    Article  Google Scholar 

  31. Krzhizhanovskya M, Filatov S, Gusarov V, Paufler P, Bubnova R, Morozov M, Meyer DC. Aurivillius phases in the Bi4Ti3O12/BiFeO3 system: thermal behavior and crystal structure. Z Anorg Allg Chem. 2005;631:1603–8.

    Article  Google Scholar 

  32. Srinivas K, Sarah P, Suryanarayana SV. Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18. Bull Mater Sci. 2003;26:247–53.

    Article  CAS  Google Scholar 

  33. Patwe SJ, Achary SN, Manjanna J, Tyagi AK, Deshpande SK, Mishra SK, Krishna PSR, Shinde AB. Observation of a new cryogenic temperature dielectric relaxation in multiferroic Bi7Fe3Ti3O21. Appl Phys Lett. 2013;103:122901–4.

    Article  Google Scholar 

  34. Lomanova NA, Gusarov VV. Electrical properties of perovskite-like compounds in the Bi2O3–TiO2–Fe2O3 system. Inorg Mater. 2011;47:420–5.

    Article  CAS  Google Scholar 

  35. Lomanova NA, Gusarov VV. Impedance spectroscopy of polycrystalline materials based on the Aurivillius phase system Bi4Ti3O12–BiFeO3. Nanosyst Phys Chem Math. 2012;3:112–22.

    Google Scholar 

Download references

Acknowledgements

The work has been carried out with the financial support of the Russian Foundation for Basic Research (Project No 16-03-01056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Lomanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomanova, N.A., Pleshakov, I.V., Volkov, M.P. et al. The thermal behavior of mixed-layer Aurivillius phase Bi13Fe5Ti6O39 . J Therm Anal Calorim 131, 473–478 (2018). https://doi.org/10.1007/s10973-017-6366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6366-5

Keywords

Navigation