Skip to main content
Log in

Studies on the thermal behavior and decomposition mechanism of dickite–potassium acetate complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition and de-hydroxylation process of dickite–potassium acetate (KAc) intercalated complex was studied using thermogravimetric (TG), differential thermal analysis (DTA), XRD and FTIR. The stability of intercalated complex was affected by heat treatment directly. The TG–DTA results showed that four changes had occurred at 64.5, 118, 301 and 406 °C, which can be attributed to (a) the loss of adsorbed water, (b) loss of the water linked to acetate ion in the layer of dickite, (c) decomposition of KAc, and (d) loss of water through de-hydroxylation, respectively. The XRD and FTIR results showed that when the heating temperature exceeded 400 °C, inner surface hydroxyls and inner hydroxyls lost gradually, generating amorphous meta-dickite. Further researches demonstrated that phase transition temperature of meta-dickite and mullite changed a lot through the intercalated KAc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guggenheim S, Adams JM, Bain DC, Bergaya F, Brigatti MF, Drits VA, Formoso MLL, Galán E, Kogure T, Stanjek H. Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale Pour l’Etude des Argiles (AIPEA) nomenclature committee for 2006. Clay Clay Miner. 2006;54:761–72.

    Article  CAS  Google Scholar 

  2. Matusik J, Gawel A, Bahranowski K. Grafting of methanol in dickite and intercalation of hexylamine. Appl Clay Sci. 2012;60:63–7.

    Article  Google Scholar 

  3. Bailey SW. Polymorphism of the kaolin minerals. Am Mineral. 1963;48:1196–209.

    CAS  Google Scholar 

  4. Ehrenberg SN, Aagaard P, Wilson MJ, Fraser AR, Duthie DML. Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Miner. 1993;28:325–52.

    Article  CAS  Google Scholar 

  5. Kloprogge JT, Wood BJ. Chemical bonding and electronic structures of the Al4[Si4O10](OH)8 polymorphs kaolinite, dickite, nacrite, and halloysite by X-Ray photoelectron spectroscopy. Clay Sci. 2015;19:39–44.

    Google Scholar 

  6. Castrillo PD, Olmos D, González-Benito J. Kinetic study of the intercalation process of dimethylsulfoxide in kaolinite. Int J Miner Process. 2015;144:70–4.

    Article  CAS  Google Scholar 

  7. Fafard J, Detellier C. Intercalation of a block co-polymer in kaolinite. J Colloid Inter Sci. 2015;450:361–5.

    Article  CAS  Google Scholar 

  8. Frost RL, Horva´th E, Mako E, Kristo´f J, Cseh T. The effect of mechanochemical activation upon the intercalation of a high defect kaolinite with formamide. J Colloid Inter Sci. 2003;265:386–395.

  9. White CE, Provis JL, Gordon LE, Riley DP, Proffen T, van Deventer JSJ. Effect of Temperature on the Local Structure of Kaolinite Intercalated with Potassium Acetate. Chem Mater. 2011;23:188–99.

    Article  CAS  Google Scholar 

  10. Cheng H, Xu P, Wang D, Frost RL. Thermal decomposition behavior and de-intercalation kinetics of kaolinite/quaternary ammonium salt complexes. J Therm Anal Calorim. 2016;126:421–33.

    Article  CAS  Google Scholar 

  11. Cheng H, Liu Q, Yang J, Du X, Frost RL. Influencing factors on kaolinite-potassium acetate intercalation complexes. Appl Clay Sci. 2010;50:476–80.

    Article  CAS  Google Scholar 

  12. Cheng H, Liu Q, Cui X, Zhang Q, Zhang Z, Frost RL. Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate. J Colloid Inter Sci. 2012;376:47–56.

    Article  CAS  Google Scholar 

  13. Cheng H, Liu Q, Yang J, Ma S, Frost RL. The thermal behavior of kaolinite intercalation complexes-a review. Thermochim Acta. 2012;545:1–13.

    Article  CAS  Google Scholar 

  14. Cheng H, Li K, Liu Q, Zhang S, Li X, Frost RL. Insight into the thermal decomposition of kaolinite intercalated with potassium acetate: an evolved gas analysis. J Therm Anal Calorim. 2014;117:1231–9.

    Article  CAS  Google Scholar 

  15. Cheng H, Hou X, Liu Q, Li X, Frost RL. New insights into the molecular structure of kaolinite-methanol intercalation complexes. Appl Clay Sci. 2015;109–110:55–63.

    Article  Google Scholar 

  16. Murray HH. Applied clay mineralogy today and tomorrow. Clay Miner. 1999;34:39–49.

    Article  CAS  Google Scholar 

  17. Murray HH, Alves CA, Bastos CH. Mining, processing and applications of the Capim Basin kaolin. Brazil. Clay Miner. 2007;42:145–51.

    Article  CAS  Google Scholar 

  18. Seifi S, Diatta-Dieme MT, Blanchart P, Lecomte-Nana GL, Kobor D, Petit S. Kaolin intercalated by urea. Ceramic applications. Constr Build Mater. 2016;113:579–85.

    Article  CAS  Google Scholar 

  19. Tippayasam C, Balyore P, Thavorniti P, Kamseu E, Leonelli C, Chindaprasirt P, Chaysuwan D. Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Constr Build Mater. 2016;104:293–7.

    Article  CAS  Google Scholar 

  20. Jiang SH, Liang QL, Bagas L, Wang SH, Nie FJ, Liu YF. Geodynamic setting of the Zijinshan porphyry-epithermal Cu-Au-Mo-Ag ore system, SW Fujian Province, China: Constrains from the geochronology and geochemistry of the igneous rocks. Ore Geol Rev. 2013;53:287–305.

    Article  Google Scholar 

  21. Zhong J, Chen YJ, Pirajnob F, Chen J, Li J, Qi JP, Li N. Geology, geochronology, fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit, Zijinshan Orefield, Fujian Province. China. Ore Geol Rev. 2014;57:61–77.

    Article  Google Scholar 

  22. Lagaly G, Ogawa M, Dékány I. Clay Mineral-Organic Interactions. In: Bergaya, F, Lagaly, G. (Eds.), Handbook of Clay Science. Developments in Clay Science. 2013;5:437.

  23. Adams JM, Jefferson DA. The Crystal Structure of a Dickite: Formamide Intercalate Al2Si2O5(OH)4. HCONH2. Acta Crystallogr. 1976;B32:1180–3.

    Article  CAS  Google Scholar 

  24. Franco F, Ruiz Cruz MD. Thermal behavior of dickite-dimethylsulfoxide intercalation complex. J Therm Anal Calorim. 2003;71:151–65.

    Article  Google Scholar 

  25. Franco F, Ruiz Cruz MD. Factors influencing the intercalation degree (‘reactivity’) of kaolin minerals with potassium acetate, formamide, dimethylsulphoxide and hydrazine. Clay Miner. 2004;39:193–205.

    Article  CAS  Google Scholar 

  26. Ruiz Cruz MD, Franco F. Thermal decomposition of a dickite-hydrazine intercalation complex. Clay Clay Miner. 2000;48:586–92.

    Article  Google Scholar 

  27. Scholtzová E, Benco L, Tunega D. A model study of dickite intercalated with formamide and N-methylformamide. Phys Chem Miner. 2008;35:299–309.

    Article  Google Scholar 

  28. Zamama M, Knidiri M. IR study of dickite-formamide intercalate, Al2Si2O5(OH)4-H2NCOH. Spectrochim Acta A. 2000;56:1139–47.

    Article  CAS  Google Scholar 

  29. Frost RL, Kristof J, Mako E, Theo Kloprogge J. Modification of the hydroxyl surface in potassium-acetate-intercalated kaolinite between 25 and 300 & #xB0;C. Langmuir. 2000;16:7421–8.

    Article  CAS  Google Scholar 

  30. Cheng H, Liu Q, Yang J, Zhang J, Frost RL, Du X. Infrared spectroscopic study of halloysite-potassium acetate intercalation complex. J Mol Struct. 2011;990:21–5.

    Article  CAS  Google Scholar 

  31. Franco F, Ruiz Cruz MD. A comparative study of the de-hydroxylation process in untreated and hydrazine-deintercalated dickite. J Therm Anal Calorim. 2006;85:369–75.

    Article  CAS  Google Scholar 

  32. Stoch L. Significance of structural factors in dehydroxylation of kaolinite polytypes. J Therm Anal Calorim. 1984;29:919–31.

    Article  CAS  Google Scholar 

  33. Shoval S, Boudeulle M, Yariv S, Lapides I, Panczer G. Micro-Raman and FTIR spectroscopy study of the thermal transformations of St. Claire dickite. Opt Mater. 1984;29:91–931.

    Google Scholar 

  34. Pekdemir AD, Sarıkaya Y, O¨nal M. Thermal transformation kinetics of a kaolinitic clay. J Therm Anal Calorim. 2016; 123:767–772.

Download references

Acknowledgements

We thank Dr. Chen (Faculty of Material Science and Engineering, Fuzhou University, PR China) for microscopic analyses and constructive discussions. We gratefully acknowledge the reviewers for their valuable comments. These works are supported by the Fundamental Research Funds for the Fuzhou Universities (Grant No. 650075) and National Natural Science Foundation of China (Grant No. 41002016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-hua Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Xh., Liu, Y., Xu, T. et al. Studies on the thermal behavior and decomposition mechanism of dickite–potassium acetate complexes. J Therm Anal Calorim 129, 1095–1102 (2017). https://doi.org/10.1007/s10973-017-6266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6266-8

Keywords

Navigation