Skip to main content
Log in

Thermal behavior analysis of halloysite–dimethylsulfoxide intercalation complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior of halloysite–dimethylsulfoxide (DMSO) intercalation complex was investigated by thermogravimetry–derivative thermogravimetry and differential scanning calorimetry (TG–DTG–DSC) analysis, X-ray diffraction (XRD) analysis, and Fourier transform infrared (FT-IR) spectroscopic analysis. The samples gradually heated up to different temperatures were studied by XRD and FT-IR. The TG–DTG results indicated that the mass losses of the intercalation complex contained two main stages, which correspond to (a) desorption of the DMSO molecules and (b) dehydroxylation of halloysite. The kaolinite–dimethylsulfoxide intercalation complex is stable below 150 °C. The XRD data indicated that the relative intensity of the peak with value of 1.12 nm decreased as increasing the temperature and disappeared at 200 °C; however, the peak with the value of 0.734 nm gradually increased in the XRD patterns. In the FT-IR spectra, the appearance of methyl bands at 3022 and 2934 cm−1 and the change of intensities for inner surface hydroxyl indicated the presence of intercalated dimethylsulfoxide. With the rise in the temperature, the intensities of methyl bands at 3022 and 2934 cm−1 decreased and remained until around 150 °C; however, the intensities of the bands attributed to inner surface hydroxyl gradually increased, which agree with the XRD and TG–DTG–DSC data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng H, Liu Q, Yang J, Zhang J, Frost RL, Du X. Infrared spectroscopic study of halloysite–potassium acetate intercalation complex. J Mol Struct. 2011;990:21–5.

    Article  CAS  Google Scholar 

  2. Du M, Guo B, Jia D. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J. 2006;42:1362–9.

    Article  CAS  Google Scholar 

  3. Yuan P, Tan D, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci. 2015;112–113:75–93.

    Article  Google Scholar 

  4. Berthier P. Analyse de l’halloysite. Ann Chim Phys. 1826; 32:332–335.

    Google Scholar 

  5. Frost RL, Kristof J, Horvath E, Kloprogge JT. Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 K. J Colloid Interface Sci. 2000;226:318–27.

    Article  CAS  Google Scholar 

  6. Bates TF, Hildebrand FA, Swineford A. Morphology and structure of endellite and halloysite. Am Miner. 1950;35:463–84.

    CAS  Google Scholar 

  7. Singh B. Why does halloysite roll?—a new model. Clay Clay Miner. 1996;44:191–6.

    Article  CAS  Google Scholar 

  8. Singer A, Zarei M, Lange FM, Stahr K. Halloysite characteristics and formation in the northern Golan Heights. Geoderma. 2004;123:279–95.

    Article  CAS  Google Scholar 

  9. Cheng H, Frost RL, Yang J, Liu Q, He J. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite. Spectrochim Acta Part A Mol Biomol Spectrosc. 2010;77:1014–20.

    Article  Google Scholar 

  10. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Halloysite clay minerals: a review. Clay Miner. 2005;40:383–426.

    Article  CAS  Google Scholar 

  11. Liu M, Jia Z, Jia D, Zhou C. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci. 2014;39:1498–525.

    Article  CAS  Google Scholar 

  12. Lvov Y, Abdullayev E. Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci. 2013;38:1690–719.

    Article  CAS  Google Scholar 

  13. Joussein E, Petit S, Delvaux B. Behavior of halloysite clay under formamide treatment. Appl Clay Sci. 2007;35:17–24.

    Article  CAS  Google Scholar 

  14. Nicolini KP, Fukamachi CR, Wypych F, Mangrich AS. Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J Colloid Interface Sci. 2009;338:474–9.

    Article  CAS  Google Scholar 

  15. Cheng H, Liu Q, Yang J, Zhang J, Frost RL. Thermal analysis and infrared emission spectroscopic study of halloysite–potassium acetate intercalation compound. Thermochim Acta. 2010;511:124–8.

    Article  CAS  Google Scholar 

  16. Horváth E, Kristóf J, Frost RL, Réder Á, Vágvölgyi V, Cseh T. Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions. J Therm Anal Calorim. 2003;71:707–14.

    Article  Google Scholar 

  17. Mellouk S, Cherifi S, Sassi M, et al. Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions. Appl Clay Sci. 2009;44:230–6.

    Article  CAS  Google Scholar 

  18. Ismail H, Pasbakhsh P, Fauzi MNA, Abu Bakar A. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test. 2008;27:841–50.

    Article  CAS  Google Scholar 

  19. Rybiński P, Janowska G. Thermal stability and flammability of nanocomposites made of diene rubbers and modified halloysite nanotubes. J Therm Anal Calorim. 2013;113:31–41.

    Article  Google Scholar 

  20. Lecouvet B, Gutierrez JG, Sclavons M, Bailly C. Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab. 2011;96:226–35.

    Article  CAS  Google Scholar 

  21. Zhang Y, Liu Q, Wu Z, Zheng Q, Cheng H. Thermal behavior analysis of kaolinite–dimethylsulfoxide intercalation complex. J Therm Anal Calorim. 2011;110:1167–72.

    Article  Google Scholar 

  22. Cheng H, Liu Q, Yang J, Zhang Q, Frost RL. Thermal behavior and decomposition of kaolinite–potassium acetate intercalation composite. Thermochim Acta. 2010;503–504:16–20.

    Article  Google Scholar 

  23. Costanzo PM, Giese JRF. Ordered halloysite: dimethylsulfoxide intercalate. Clays Clay Miner. 1986;34:105–7.

    Article  CAS  Google Scholar 

  24. Zhang Y, Liu Q, Wu Z, Zhang Y. Thermal behavior analysis of two bentonite samples selected from China. J Therm Anal Calorim. 2015;121:1287–95.

    Article  CAS  Google Scholar 

  25. Sun J, Wu Z, Cheng H, Zhang Z, Frost RL. A Raman spectroscopic comparison of calcite and dolomite. Spectrochim Acta Part A. 2014;117:158–62.

    Article  CAS  Google Scholar 

  26. Frost RL, Van Der Gaast SJ, Zbik M, Kloprogge JT, Paroz GN. Birdwood kaolinite: a highly ordered kaolinite that is difficult to intercalate: an XRD, SEM and Raman spectroscopic study. Appl Clay Sci. 2002;20:177–87.

    Article  CAS  Google Scholar 

  27. Frost RL. Hydroxyl deformation in kaolins. Clay Clay Miner. 1998;46:280–9.

    Article  CAS  Google Scholar 

  28. Frost RL, Kristof J, Horvath E, Kloprogge JT. Molecular structure of dimethyl sulfoxide in dmso-intercalated kaolinites at 298 and 77 K. J Phys Chem A. 1999;103:9654–60.

    Article  CAS  Google Scholar 

  29. Frost RL, Johansson U. Combination bands in the infrared spectroscopy of kaolins: a DRIFT spectroscopic study. Clay Clay Miner. 1998;46:466–77.

    Article  CAS  Google Scholar 

  30. Ledoux RL, White JL. Infrared study of the OH groups in expanded kaolinite. Science. 1964;143:244–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the School Foundation of Inner Mongolia University of Technology (2016046) and the National Natural Science Foundation of China (51604158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Y., Zhang, Y. et al. Thermal behavior analysis of halloysite–dimethylsulfoxide intercalation complex. J Therm Anal Calorim 129, 985–990 (2017). https://doi.org/10.1007/s10973-017-6258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6258-8

Keywords

Navigation