Skip to main content
Log in

Low-temperature synthesis of hexagonal barium ferrite (BaFe12O19) nanoparticles by annealing at 450 °C followed by quenching

A structural, thermokinetic, magnetic and photoluminescence study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Citrate precursor method has been used to obtain nanosized particles of barium hexaferrite at low temperatures. Samples were annealed at 450 °C for 3 and 5 h. Quenching of the third sample was done by taking the crucible out from the muffle furnace after annealing it for 5 h and putting it abruptly into an ice bath. The saturation magnetization has been found to be 4.36 and 0.04 emu g−1 for the samples obtained upon annealing at 450 °C for 3 and 5 h, respectively, while that of the quenched sample has been found to be 4.61 emu g−1. In case of the sample obtained after 5-h annealing, the squareness value was found to be maximum indicating significance in memory and switching applications. For the quenched and the 3-h annealing products, the magnetic data values are similar. Creation of spin disorders on the surface upon prolonged annealing, due to disappearance of oxygen ions and subsequent breakage of superexchange interactions between cations, has been undone upon quenching. The XRD and TEM data indicate that the particle size (9–17 nm) gets lower in case of the quenched samples. Photoluminescence study of the quenched sample furnished prominent peaks in UV, visible and near-IR regions under 200-nm excitation. The TG–DSC data were analysed for the kinetic parameters, activation energy (E), pre-exponential factor (A) using the Kissinger isoconversion and the Ozawa–Flynn–Wall methods for the first-step decomposition of the quenched sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ri CH, Li L, Qi Y. Anisotropy of the electrical conductivity in W-type hexagonal ferrites BaFe18O27 and BaCo2Fe16O27 from first principles. J Magn Magn Mater. 2012;324(8):1498–502.

    Article  CAS  Google Scholar 

  2. Pullar RC, Bdikin IK, Bhattacharya AK. Magnetic properties of randomly oriented BaM, SrM, Co2Y, Co2Z and Co2W hexagonal ferrite fibres. J Europ Cer Soc. 2012;32(4):905–13.

    Article  CAS  Google Scholar 

  3. Campbell P. Permanent magnet materials and their application. Cambridge: Cambridge University Press; 1994.

    Book  Google Scholar 

  4. Topal U, Ozkan H, Sozeri H. Synthesis and characterization of nanocrystalline BaFe12O19 obtained at 850 °C by using ammonium nitrate melt. J Magn Magn Mater. 2004;284:416–22.

    Article  CAS  Google Scholar 

  5. Molaei MJ, Ataie A, Raygan S, Picken SJ, Tichelaar FD. The effect of heat treatment and re-calcination on magnetic properties of BaFe12O19/Fe3O4 nano-composite. Ceram Int. 2012;38(4):3155–9.

    Article  CAS  Google Scholar 

  6. Liu Y, Drew MGB, Liu Y. Optimizing the methods of synthesis for barium hexagonal ferrite—An experimental and theoretical study. Mater Chem Phys. 2012;134:266–72.

    Article  CAS  Google Scholar 

  7. Li CJ, Wang B, Wang JN. Magnetic and microwave absorbing properties of electrospun Ba(1−x)La x Fe12O19 nanofibers. J Magn Magn Mater. 2012;324(7):1305–11.

    Article  CAS  Google Scholar 

  8. Chang S, Kangning S, Pengfei C. Microwave absorption properties of Ce-substituted M-type barium ferrite. J Magn Magn Mater. 2012;324(5):802–5.

    Article  Google Scholar 

  9. Topal U. Towards further improvements of the magnetization parameters of B2O3-Doped BaFe12O19 particles: etching with hydrochloric acid. J Supercond Nov Magn. 2012;25:1485–8.

    Article  CAS  Google Scholar 

  10. Dursun S, Topkaya R, Akdogan N, Alkoy S. Comparison of the structural and magnetic properties of submicron barium hexaferrite powders prepared by molten salt and solid state calcination routes. Ceram Int. 2012;38(5):3801–6.

    Article  CAS  Google Scholar 

  11. Singh RK, Narayan A, Prasad K, Yadav RS, Pandey AC, Singh AK, Verma L, Verma RK. Structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method. J Therm Anal Calorim. 2012;110:573–80.

    Article  CAS  Google Scholar 

  12. Singh RK, Yadav A, Narayan A, Singh AK, Verma L, Verma RK. Thermal, structural and magnetic studies on chromite spinel, synthesized by citrate precursor method and annealed at temperature 450 °C and 650 °C. J Therm Anal Calorim. 2012;107:197–204.

    Article  CAS  Google Scholar 

  13. Singh RK, Yadav A, Narayan A, Chandra M, Verma RK. Thermal, XRD and magnetization studies on ZnAl2O4 and NiAl2O4 spinels, synthesized by citrate precursor method and annealed at temperature 450 °C and 650 °C. J Therm Anal Calorim. 2012;107:205–10.

    Article  CAS  Google Scholar 

  14. Verma RK, Hill JO, Niinisto L, Mojumdar SC, Kumar DD. A curriculum framework for education in thermal analysis. J Mater Educ. 2012;34:133–50.

    Google Scholar 

  15. Verma RK, Verma L, Chandra M. Thermoanalytical studies on the non-isothermal dehydration and decomposition of dl-lactates of a series of transition metals. Indian J Chem. 2003;42A:2982–7.

    CAS  Google Scholar 

  16. Bhattacharjee NC, Kumar M, Kumar S, Verma RK. Kinetic and mechanistic studies on non-isothermal decomposition of potassium dioxalatocuprate(II) dihydrate. J Indian Chem Soc. 1998;75(5):317–8.

    CAS  Google Scholar 

  17. Verma RK, Verma L, Chandra M, Bhushan A. Non-isothermal dehydration and decomposition of dl-lactates of transition metals and alkaline earth metals: a comparative study. J Therm AnalCalorim. 2005;80:351–4.

    Article  CAS  Google Scholar 

  18. Kumar M, Verma RK, Verma L, Bhattacharjee NC, Kumar S, Verma BP. Thermal decomposition of potassium trioxalato chromate(III) trihydrate: a kinetic and mechanistic study. Asian J Chem. 1996;8(3):543–6.

    CAS  Google Scholar 

  19. Agrawal HL, Mishra A, Ambasta RK, Verma L, Verma RK, Verma BP. Kinetic parameters of thermolysis of complexes of rhodium(III), palladium(II) and platinum(II) with substituted morpholines from their non-isothermal thermogravimetric data. Asian J Chem. 1994;6:130–4.

    CAS  Google Scholar 

  20. Verma BP, Verma RK, Chandra M, Pandey S, Mallick AK, Verma L. A study of non-isothermal decomposition of calcium dl-lactate pentahydrate. Asian J Chem. 1994;6:606–12.

    CAS  Google Scholar 

  21. Verma RK, Verma L, Ranjan M, Verma BP, Mojumdar SC. Thermal analysis of 2-oxocyclopentanedithiocarboxylato complexes of iron(III), copper(II) and zinc(II) containing pyridine or morpholine as the second ligand. J Therm Anal Calorim. 2008;94:27–31.

    Article  CAS  Google Scholar 

  22. Verma RK, Verma L, Bhushan A, Verma BP. Thermal decomposition of complexes of cadmium(II) and mercury(II) with triphenylphosphanes. J Therm Anal Calorim. 2007;90:725–9.

    Article  CAS  Google Scholar 

  23. Brown ME, Gallagher PK. Introduction to recent advances, techniques and applications of thermal analysis and calorimetry. In: Brown ME, Gallagher PK, editors. Hand book of thermalanalysis and calorimetry. New York: Elsevier; 2008. p. 1–12.

    Google Scholar 

  24. Verma RK, Verma L, Chandra M, Verma BP. Kinetic parameters of thermal dehydration and decomposition from thermoanalytical curves of zinc dl-lactate. J Indian Chem Soc. 1998;75:162–4.

    CAS  Google Scholar 

  25. Wang J, Chen Q, Che S. Magnetic properties in BaFe12O19 nanoparticles prepared under a magnetic field. J Magn Magn Mater. 2004;280:281–6.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  28. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  29. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  30. Wohlfarh EP. Fundamental properties of hexaferrite with magnetoplumbite structure in ferromagnetic materials. NewYork: North-Holland Publishing Company; 1982.

    Google Scholar 

  31. Martirosyan KS, Galstyan Hossain, Wang YJ, Litvinov D. Barium hexaferrite nanoparticles: synthesis and magnetic properties. Mater Sci Eng, B. 2011;176:8–13.

    Article  CAS  Google Scholar 

  32. Kodama RH, Berkowitz AE, Mcniff EJ, Foner S. Surface disorder in NiFe2O4 nanoparticles. Phys Rev Lett. 1996;77:394–7.

    Article  CAS  Google Scholar 

  33. Misra RDK, Gubbala S, Kale A. Egelhoff Jr WF.A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. Mater Sci Eng, B. 2004;111(2–3):164–74.

    Article  Google Scholar 

  34. Mishra DK, Qi X. Energy levels and photoluminescence properties of nickel-doped bismuth ferrite. J Alloys Compd. 2010;504:27–31.

    Article  CAS  Google Scholar 

  35. Ghatak AK, Loknathan S. quantum mechanics, theory and applications. India: Macmillan India Ltd; 1984. p. 503.

    Google Scholar 

  36. Siwach OP, Sen P. Synthesis and study of fluorescence properties of Cu nanoparticles. J Nanopart Res. 2008;10:107–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit K. Verma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ods 93 kb)

Supplementary material 2 (ods 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R.K., Singh, R.K., Narayan, A. et al. Low-temperature synthesis of hexagonal barium ferrite (BaFe12O19) nanoparticles by annealing at 450 °C followed by quenching. J Therm Anal Calorim 129, 691–699 (2017). https://doi.org/10.1007/s10973-017-6247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6247-y

Keywords

Navigation