Skip to main content
Log in

Effect of barium sulfate on thermal stability and crystallization properties of poly(ethylene terephthalate)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to improve the dispersion and increase the compatibility between barium sulfate (BaSO4) nanoparticles and poly(ethylene terephthalate) (PET) matrix, hydrophobic BaSO4 nanoparticles were successfully prepared. PET/BaSO4 nanocomposites were prepared by in situ polymerization and further investigated properties improvement in PET by incorporating BaSO4 nanoparticles. The results showed the presence of BaSO4 nanoparticles improved the stability of PET matrix and accelerated crystallization process of PET matrix. From TG curves, it was concluded that PET and the samples with different content of BaSO4 nanoparticles presented good thermal stabilities, since no remarkable mass loss occurred up to 360 °C (<0.5%). Moreover, activation energy of nanocomposites during thermal decomposition was calculated by Friedman method. Crystallization kinetics under isothermal conditions was explained by Avrami equation. The activation energy of PET nanocomposites containing BaSO4 nanoparticles was higher than PET, because the presence of BaSO4 nanoparticles inhibited char formation and escape of volatile byproducts during thermal decomposition of PET. The crystallization kinetics under isothermal conditions could be described by the Avrami equation. For PET and PET/BaSO4 nanocomposites, the Avrami exponent n both decreased with increasing crystallization temperature. In addition, for the same crystallization temperature, the value of n increased with increasing BaSO4 content. The change of the n values indicated that the addition of BaSO4 resulted in the increase in the crystallizing growth points. That is a heterogeneous nucleating effect of BaSO4 on crystallization of PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Víctor JC, Carlos AA, Adriana BE, José MM, Silvia GS, Abraham FJ, Francisco JM, Benjamin SH. Carbon nanotube surface-induced crystallization of polyethylene terephthalate (PET). Polymer. 2014;55:642–50.

    Article  Google Scholar 

  2. Wellena RMR, Canedob EL. On the Kissinger equation and the estimate of activation energies for non-isothermal cold crystallization of PET. Polym Test. 2014;40:33–8.

    Article  Google Scholar 

  3. Mohammadi S, Taremi FA, Rafizadeh M. Crystallization conditions effect on molecular weight of solid-state polymerized poly(ethylene terephthalate). Iran Polym J. 2012;21:415–22.

    Article  CAS  Google Scholar 

  4. Pilawka R, Paszkiewicz S, Rosłaniec Z. Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J Therm Anal Calorim. 2014;115:451–60.

    Article  CAS  Google Scholar 

  5. Dogan M, Erdogan S, Bayraml E. Mechanical, thermal, and fire retardant properties of poly(ethylene terephthalate) fiber containing zinc phosphinate and organo-modified clay. J Therm Anal Calorim. 2013;112:871–6.

    Article  CAS  Google Scholar 

  6. Burgess SK, Lee JS, Mubarak CR, Kriegel RM, Koros WJ. Caffeine antiplasticization of amorphous poly(ethylene terephthalate): effects on gas transport, thermal, and mechanical properties. Polymer. 2015;65:34–44.

    Article  CAS  Google Scholar 

  7. Saikia N, Brito J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as partial substitution of natural aggregate. Constr Build Mater. 2014;52:236–44.

    Article  Google Scholar 

  8. Carosio F, Alongi J, Frache A. Influence of surface activation by plasma and nanoparticle adsorption on the morphology, thermal stability and combustion behavior of PET fabrics. Eur Polym J. 2011;47:893–902.

    Article  CAS  Google Scholar 

  9. Vassiliou AA, Chrissafis K, Bikiaris DN. Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubes. J Therm Anal Calorim. 2010;100:1063–71.

    Article  CAS  Google Scholar 

  10. Gu XH, Zeng P, Zhou JL, Xu B. Preparation and characterization of poly(ethylene terephthalate) incorporated with secondary-modified montmorillonite. Iran Polym J. 2014;23:249–55.

    Article  CAS  Google Scholar 

  11. Motahari S, Dornajafi L, Ahmadi IF. Migration of organic compounds from PET/clay nanocomposites: influences of clay type, content and dispersion state. Iran Polym J. 2012;21:669–81.

    Article  CAS  Google Scholar 

  12. Fotso Talla AS, Erchiqui F, Godard F, Kocaef D. An evaluation of the thermal degradation kinetics of novel melt processed PET-hemp fiber composites. J Therm Anal Calorim. 2016;126:1387–96.

    Article  CAS  Google Scholar 

  13. Fakhrpour G, Saleh Bagheri, Mahdi Golriz, Shekari M, Omrani A, Shameli A. Degradation kinetics of PET/PEN blend nanocomposites using differential isoconversional and differential master plot approaches. J Therm Anal Calorim. 2016;124:917–24.

    Article  CAS  Google Scholar 

  14. Villain F, Coudane J, Vert M. Thermal degradation of poly(ethylene terephthalate) and the estimation of volatile degradation products. Polym Degrad Stab. 1994;43:431–40.

    Article  CAS  Google Scholar 

  15. Zheng J, Cui P, Tian X, Zheng K. Pyrolysis studies of polyethylene terephthalate/silica nanocomposites. J Appl Polym Sci. 2007;104:9–14.

    Article  CAS  Google Scholar 

  16. Wan T, Chen L, Chua YC, Lu X. Crystalline morphology and isothermal crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci. 2004;94:1381–8.

    Article  CAS  Google Scholar 

  17. Wang Y, Liu W, Zhang H. The morphology and non-isothermal crystallization characteristics of poly(trimethylene terephthalate)/BaSO4 nanocomposites prepared by in situ polycondensation. Polym Test. 2009;28:402–11.

    Article  CAS  Google Scholar 

  18. Gao W, Zhou B, Ma X, Liu Y, Wang Z, Zhu Y. Preparation and characterization of BaSO4/poly(ethylene terephthalate) nanocomposites. Colloids Surf A: Physicochem Eng Asp. 2011;385:181–7.

    Article  CAS  Google Scholar 

  19. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65–71.

    Article  CAS  Google Scholar 

  20. Antoniadis G, Paraskevopoulos KM, Bikiaris D, Chrissafis K. Non-isothermal crystallization kinetic of poly(ethylene terephthalate)/fumed silica (PET/SiO2) prepared by in situ polymerization. Thermochim Acta. 2010;510:103–12.

    Article  CAS  Google Scholar 

  21. Sanchez-Garcia MD, Lagaron JM, Hoa SV. Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos Sci Technol. 2010;70:1095–105.

    Article  CAS  Google Scholar 

  22. Ghanbari A, Heuzey MC, Carreau PJ, Ton MT. A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer. 2013;54:1361–9.

    Article  CAS  Google Scholar 

  23. Inuwa IM, Hassan A, Wang DY, Samsudin SA, Mohamad MK, Wong SL, Jawaid M. Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polym Degrad Stab. 2014;110:137–48.

    Article  CAS  Google Scholar 

  24. Araujo SA, Araujo AS, Fernandes NS, Fernandes VJ, Ionashiro M. Effect of the catalyst MCM-41 on the kinetic of the thermal decomposition of poly(ethylene terephthalate). J Therm Anal Calorim. 2010;99:465–9.

    Article  CAS  Google Scholar 

  25. Bian J, Ye SR, Feng LX. Heterogeneous nucleation on the crystallization poly(ethylene terephthalate). J Polym Sci Part B: Polym Phys. 2003;41:2135–44.

    Article  CAS  Google Scholar 

  26. Chen X, Li C, Shao W. Isothermal crystallization kinetics and melting behaviour of PET/ATO nanocomposites prepared by in situ polymerization. Eur Polym J. 2007;43:3177–86.

    Article  CAS  Google Scholar 

  27. Kim SH, Park SW, Gil ES. Crystallization kinetics of poly(ethylene terephthalate) with thermotropic liquid crystalline polymer blends. J Appl Polym Sci. 1998;67:1383–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Heilongjiang Province of China (No. QC2015011) and Application Technology and development project of Harbin of China (No. 2015RQXXJ004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Wang, Z., Zhao, Z. et al. Effect of barium sulfate on thermal stability and crystallization properties of poly(ethylene terephthalate). J Therm Anal Calorim 129, 1047–1055 (2017). https://doi.org/10.1007/s10973-017-6237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6237-0

Keywords

Navigation