Skip to main content
Log in

Steric and electronic effects to interpret non-covalent interactions in binary mixtures of dimethyl carbonate and isomeric cresols through thermophysical, acoustic and spectroscopic studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The densities (ρ), viscosities (η) and ultrasonic velocities (u) were measured for the binary mixtures of dimethyl carbonate (DMC) and isomeric cresols viz., o-cresol, m-cresol, p-cresol over the entire range of composition at atmospheric pressure and at different temperatures (303.15, 308.15,313.15, 318.15) K. From these experimental results, excess molar volume \((V_{\text{m}}^{\text{E}} )\), deviation in adiabatic compressibility (Δβ ad), excess intermolecular free length (\(L_{\text{f}}^{\text{E}}\)), excess acoustic Impedance (Z E), deviation in viscosity (Δη), excess Gibbs free energy of activation of viscous flow \(\left( {\Delta G^{{*{\text{E}}}} } \right)\) and excess enthalpy (\(H^{\text{E}}\)) have been calculated. The excess or deviation properties were fitted to Redlich–Kister polynomial equation to obtain their coefficients and standard deviations. The excess or deviation properties were found to be either negative or positive depending on the molecular interactions between the components of hetero molecules, and the nature of liquid mixtures has been discussed in terms of molecular interactions through steric and electronic effects. To know more about solute–solvent interactions, partial molar volumes (\(\bar{V}_{{{\text{m}},1}} ,\bar{V}_{{{\text{m}},2}}\)) and excess partial molar volumes (\(\bar{V}_{{{\text{m}},1}}^{\text{E}} , \bar{V}_{{{\text{m}},2}}^{\text{E}}\)) have been computed. Further, variation of excess molar enthalpy with pressure is also evaluated to elucidate the molecular interactions in the liquid mixture. The present investigation also comprises of evaluation of the acoustic nonlinearity parameter (B/A) in the mixtures and calculation of cohesive energy (ΔA), Van der Wall’s constants (a, b), distance of closest approach (d). The FTIR provides support to the thermodynamic findings to explain specific interaction between unlike molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oswal SL, Desai HS. Studies of viscosity and excess molar volume of binary mixtures: 4. 1-Alkanol + tri-n-butylamine mixtures at 303.15 and 313.15 K. Fluid Phase Equilib. 2003;204:281–94.

    Article  CAS  Google Scholar 

  2. Oswal SL, Patel IN. Excess molar volumes of binary mixtures of alkyl acetates with hexane, tetrachloromethane, and trichloromethane. Fluid Phase Equilib. 1998;149:249–59.

    Article  CAS  Google Scholar 

  3. Kinart CM, Kinart WJ, Cwiklinska A. 2-Methoxyethanol-tetrahydrofuran binary liquid system viscosities, densities, excess molar volumes and excess gibbs activation energies of viscous flow at various temperatures. J Therm Anal Calorim. 2002;68:307–17.

    Article  CAS  Google Scholar 

  4. Pistoia G, editor. Lithium batteries: new materials, developments and perspectives, industrial chemistry library, vol. 5. Amsterdam: Elsevier; 1994.

    Google Scholar 

  5. Tobishima SI, Arakawa M, Yamaki JI. Electrolytic properties of LiClO4—propylene carbonate mixed with amide-solvents for lithium batteries. Electrochim Acta. 1988;33:239–44.

    Article  CAS  Google Scholar 

  6. Romano E, Trenzado JL, González E, Matos JS, Segade L, Jiménez E. Thermophysical properties of four binary dimethyl carbonate+ 1-Alcohol Systems at 288.15–313.15 K. Fluid Phase Equilib. 2003;211:219–40.

    Article  CAS  Google Scholar 

  7. Kavitha Ch, Ratnakar A, Durga Bhavani M, Narendra K. Study of Molecular Interactions in Ternary Mixtures of Quinoline with o-cresol, m-cresol and p-cresol in Methanol at T = 303.15, 308.15, 313.15, and 318.15 K. Int Res J Pure Appl Chem. 2014;4:213–26.

    Article  Google Scholar 

  8. Ranganayakulu SV, Sreenivasa Reddy C, Venkateswar S, Linga RD. Ultrasonic studies of the binary mixtures of ethyl acetate and cresols—applications of Kosower and Dimroth treatments. Mater Chem Phys. 2005;90:213–20.

    Article  Google Scholar 

  9. Ahluwalia R, Gupta R, Vashisht JL, Wanchoo RK. Physical properties of binary liquid systems: ethanoic acid/propanoic acid/butanoic acid with cresols. J Solut Chem. 2013;42:945–66.

    Article  CAS  Google Scholar 

  10. Fakruddin SK, Srinivasu CH, Narendra K. Acoustical parameters of some binary liquid mixtures containing heterocyclic aromatic compound with methylphenols at different temperatures. Int J Res Chem Environ. 2012;2:164–7.

    CAS  Google Scholar 

  11. Bhatia SC, Rani R, Bhatia R, Anand H. Volumetric and ultrasonic behaviour of binary mixtures of 1-nonanol with o-cresol, m-cresol, p-cresol and anisole at T = (293.15 and 313.15) K. J Chem Thermodyn. 2011;43:479–86.

    Article  CAS  Google Scholar 

  12. Lugo L, Comunas MJP, Lopez ER, Fernandez J. (p, Vm, T, x) measurements of dimethyl carbonate + octane binary mixtures I. Experimental results, isothermal compressibilities, isobaric expansivities and internal pressures. Fluid Phase Equilib. 2001;186:235–55.

    Article  CAS  Google Scholar 

  13. Shin SH, Jeong IY, Jeong YS, Park SJ. Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, Methanol and Phenol. Fluid Phase Equilib. 2014;376:105–10.

    Article  CAS  Google Scholar 

  14. Iglesias-Otero MA, Troncoso J, Carballo E, Romani L. Density and refractive index for binary systems of the ionic liquid [Bmim][BF4] with methanol, 1,3-dichloropropane, and dimethyl carbonate. J Solut Chem. 2007;36:1219–30.

    Article  CAS  Google Scholar 

  15. Chen F, Yang Z, Chen Z, Hu J, Chen C, Cai J. Density, viscosity, speed of sound, excess property and bulk modulus of binary mixtures of gamma-butyrolactone with acetonitrile, dimethyl carbonate, and tetrahydrofuran at temperatures (293.15 to 333.15) K. J Mol Liq. 2015;209:683–92.

    Article  CAS  Google Scholar 

  16. Vogel AI. Vogel’s textbook of practical organic chemistry. 5th ed. New York: Wiley; 1989.

    Google Scholar 

  17. Riddick JA, Bunger WB, Sakano TK. Organic solvents: physical properties and methods of purification. 4th ed. New York: Wiley; 1986.

    Google Scholar 

  18. Ren R, Zuo Y, Zhou Q, Zhang H, Zhang S. Density, excess molar volume and conductivity of binary mixtures of the ionic liquid 1,2-dimethyl-3- hexylimidazolium bis(trifluoromethylsulfonyl)imide and dimethyl carbonate. J Chem Eng Data. 2011;56:27–30.

    Article  CAS  Google Scholar 

  19. Sharma S, Patel P, Bhalodia J. Volumetric and viscometric study of binary mixtures of 1,8-cineole with o-, m- and p-cresol at 303.15, 308.15 and 313.15 K. J Phys Chem Liq. 2016;54:42–55.

    Article  CAS  Google Scholar 

  20. Pereiro AB, Rodríguez A, Canosa J, Tojo J. Density, viscosity, and speed of sound of dialkyl carbonates with cyclopentane and methyl cyclohexane at several temperatures. J Chem Eng Data. 2004;49:1392–9.

    Article  CAS  Google Scholar 

  21. Pal A, Dass G. Excess molar volumes and viscosities of diethylene glycol diethyl ether with dimethyl carbonate, diethyl carbonate, and propylene carbonate at (298.15, 308.15, and 318.15) K. J Chem Eng Data. 2000;45:487–91.

    Article  CAS  Google Scholar 

  22. Rosal R, Medina I, Forster E, Maclnnes J. Viscosities and densities for binary mixtures of cresols. Fluid Phase Equilib. 2003;211:143–50.

    Article  CAS  Google Scholar 

  23. Yang C, Yu W, Tang D. Densities and viscosities of binary mixtures of m-cresol with ethylene glycol or methanol over several temperatures. J Chem Eng Data. 2006;51:935–9.

    Article  CAS  Google Scholar 

  24. Umadevi P, Rambabu K, Rao MN, Rao KS, Rambabu C. Densities, adiabatic compressibility, free-length, viscosities and excess volumes of p-cresol(1)+ dimethyl sulfoxide (2), + dimethyl formamide (2), and+ 1,4-dioxane at 30315-31815K. Phys Chem Liq. 1995;30:29–46.

    Article  CAS  Google Scholar 

  25. Rodríguez A, Canosa J, Tojo J. Physical properties of binary mixtures (dimethyl carbonate + alcohols) at several temperatures. J Chem Eng Data. 2001;46:1476–86.

    Article  Google Scholar 

  26. Pardo JM, González-Salgado D, Tovar CA, Cerdeiriña CA, Carballo E, Romaní L. Comparative study of the thermodynamic behaviour of the binary mixtures dimethyl carbonate+ (benzene, n-heptane, cyclohexane, or toluene). Can J Chem. 2002;80:370–8.

    Article  CAS  Google Scholar 

  27. Bhatia SC, Rani R, Bhatia R. Densities, speeds of sound and refractive indices of binary mixtures of decan-1-ol with anisole, o-cresol, m-cresol, and p-cresol at t = (298.15, 303.15, and 308.15) K. J Chem Eng Data. 2011;56:1669–74.

    Article  CAS  Google Scholar 

  28. Raveendra M, Chandrasekhar M, Narasimharao C, Venkatramanna L, Siva Kumar K, Dayananda Reddy K. Elucidation of hydrogen bonding formation by a computational, FT-IR spectroscopic and theoretical study between benzyl alcohol and isomeric cresols. RSC Adv. 2016;6:27335–48.

    Article  CAS  Google Scholar 

  29. Santhi N, Sabarathinam PL, Emayavaramban M, Gopi C, Manivannan C. Molecular interaction studies in binary liquid mixtures from ultrasonic data. E-J Chem. 2010;7:648–54.

    Article  CAS  Google Scholar 

  30. Weissberger A. Techniques of organic chemistry. 3rd ed. New York: Wiley; 1965.

    Google Scholar 

  31. Redlich O, Kister AT. Thermodynamic of non electrolyte solutions: algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8.

    Article  Google Scholar 

  32. Rama Rao GV, Sarma AV, Rambabu C. Excess volumes, deviation in viscosities and compressibilities of binary mixtures consisting of morpholine, piperidine with methanol and pyridine at different temperatures. Indian J Pure Appl Phys. 2004;42:820–6.

    Google Scholar 

  33. Ali A, Nain AK, Chand D, Lal D. Ultrasonic, volumetric and viscometric studies of molecular interactions in binary mixtures of dimethylsulphoxide with polar substituted cyclohexanes at 30°C. Phys Chem Liq. 2007;45:79–91.

    Article  CAS  Google Scholar 

  34. Ali A, Nain AK, Sharma VK, Ahmad S. Study of molecular interaction in ternary mixtures through ultrasonic speed measurements. Phys Chem Liq. 2004;42:375–83.

    Article  CAS  Google Scholar 

  35. Rajagopal K, Chenthilnath S. Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures. J Chem Thermodyn. 2010;42:675–83.

    Article  CAS  Google Scholar 

  36. Sankar MG, Ponneri V, Kumar KS, Sakamuri S. Molecular interactions between amine and cyclic ketones at different temperatures. J Therm Anal Calorim. 2014;115:1821–7.

    Article  CAS  Google Scholar 

  37. Srinivasa Reddy M, Nayeem SM, Raju K, Srinivasa Rao V, Hari Babu B. The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium ethylsulfate +2-ethoxyethanol from density, speed of sound and refractive index measurements. J Mol Liq. 2016;218:83–94.

    Article  Google Scholar 

  38. Nain AK. Densities and volumetric properties of (acetonitile + an amide) at temperatures between 293.15 and 318.15 K. J Chem Thermodyn. 2006;38:1362–70.

    Article  CAS  Google Scholar 

  39. Fort RJ, Moore WR. Adiabatic compressibilities of binary liquid mixtures. J Trans Faraday Soc. 1965;61:2102–11.

    Article  CAS  Google Scholar 

  40. Nayeem Md Sk, Kondaiah M, Sreekanth K, Srinivasa Reddy M, Krishna Rao D. Thermoacoustic, volumetric, and viscometric investigations in the binary mixtures of 1,4-dioxane with n-hexane or n-heptane or n-octane. J Therm Anal Calorim. 2016;123:2241–2255.

  41. Govardhana Rao S, Madhu Mohan T, Vijaya Krishna T, Srinivasa Krishna T, Subba RB. Density, refractive index, and speed of sound of the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate +n-vinyl-2-pyrrolidinone from t = (298.15 to 323.15) K at atmospheric pressure. J Chem Eng Data. 2015;60:886–94.

    Article  Google Scholar 

  42. Srinivasa Reddy M, Nayeem S, Raju K, Hari BB. The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium tetrafluoroborate+ 2-ethoxyethanol from density, speed of sound, and refractive index measurements. J Therm Anal Calorim. 2016;124:959–71.

    Article  CAS  Google Scholar 

  43. Nayeem Md Sk, Kondaiah M, Sreekanth K, Rao DK. Comparative study of molecular interactions in aromatic, cyclic and aliphatic ketones with 1-octanol at 308.15 K: an insight from ultrasonic velocity and density. J Mol Liq. 2015;207:286–93.

    Article  CAS  Google Scholar 

  44. Brocos P, Piñeiro Á, Bravo R, Amigo A. Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Phys Chem Chem Phys. 2003;5:550–7.

    Article  CAS  Google Scholar 

  45. Pineiro Á, Brocos P, Amigo A, Pintos M, Bravo R. Prediction of excess volumes and excess surface tensions from experimental refractive indices. Phys Chem Liq. 2000;38:251–60.

    Article  CAS  Google Scholar 

  46. Marcus Y. Ion solvation in nonaqueous solvents. New York: Wiley-Interscience; 1985.

    Google Scholar 

  47. Praveen Chand G, Gowri Sankar M, Ramachandran D, Rambabu C. Orientation effect on sign and magnitude of excess thermodynamic and transport properties of binary liquid mixtures at different temperatures. J Therm Anal Calorim. 2015;119:2069–78.

    Article  CAS  Google Scholar 

  48. Yang C, Xu W, Ma P. Excess molar volumes and viscosities of binary mixtures of dimethyl carbonate with chlorobenzene, hexane, and heptane from (293.15 to 353.15) K and at Atmospheric Pressure. J Chem Eng Data. 2004;49:1802–8.

    Article  CAS  Google Scholar 

  49. Nayeem Sk M, Kondaiah M, Sreekanth K, Krishna Rao D. Thermoacoustic, volumetric, and viscometric investigations in binary liquid system of cyclohexanone with benzyl benzoate at t = 30815, 31315, and 31815 K. J Thermodyn. 2014;. doi:10.1155/2014/487403.

    Google Scholar 

  50. Raghuram N, Suresh R, Ramesh G, Sowjanya G, Jyostna TS. Excess parameters for the binary mixtures of sulfolane with chloroethanes at different temperatures. J Therm Anal Calorim. 2015;119:2107–17.

    Article  CAS  Google Scholar 

  51. Singh S, Parveen S, Shukla D, Yasmin M, Gupta M, Shukla JP. Ultrasonic and Volumetric Study of N-H Bond Complexes in Binary Mixtures. J Solut Chem. 2011;40:889–99.

    Article  CAS  Google Scholar 

  52. Kermanpour F, Niakan HZ. Measurement and modeling the excess molar properties of binary mixtures of [C6mim][BF4] + 3-amino-1-propanol and {[C6mim][BF4] + isobutanol}: application of Prigogine–Flory–Patterson theory. J Chem Thermodyn. 2012;48:129–39.

    Article  CAS  Google Scholar 

  53. Hartmann B. Potential energy effects on the sound speed in liquids. J Acoust Soc Am. 1979;65:1392–6.

    Article  CAS  Google Scholar 

  54. Copens AB, Beyer RT, Ballou J. Parameter of nonlinearity in fluids. III. Values of sound velocity in liquid metals. J Acoust Soc Am. 1967;41:1443–8.

    Article  Google Scholar 

  55. Jugan J, Khadar MA. Acoustic non-linearity parameter B/A and related molecular properties of binary organic liquid mixtures. J Mol Liq. 2002;100:217–27.

    Article  CAS  Google Scholar 

  56. Dash AK, Rita P. Ultrasonic study on ternary mixture of dimethyl acetamide (DMAC) in diethyl ether and acetone. Res J Phys Sci. 2013;1:12–20.

    Google Scholar 

  57. Bhalodia J, Sharma S. Volumetric, refractive and FT-IR behaviour of β-pinene with o, m, p- cresol at 303.15, 308.15 and 313.15 K. J Mol Liq. 2014;193:249–55.

    Article  CAS  Google Scholar 

  58. Wisniak J, Cortez G, Peralta RD, Infante R, Elizalde LE, Amaro TA, García O, Soto H. Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K. J Chem Thermodyn. 2008;40:1671–83.

    Article  CAS  Google Scholar 

  59. Satyanarayana GR, Bala Karuna Kumar D, Sujatha K, Lakshmanarao G, Rambabu C. Probing the intermolecular interactions in the binary liquid mixtures of o-chlorophenol with alkoxyethanols through ultrasonic, transport and FTIR spectroscopic studies at different temperatures. J Mol Liq. 2016;216:526–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Sk.B. wishes to thank Department of chemistry, Acharya Nagarjuna University for providing laboratory facilities. She gratefully acknowledges the technical support for the IR studies received from Department of Physics, Acharya Nagarjuna University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rambabu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beebi, S., Nayeem, S.M., Sri, P.B.S. et al. Steric and electronic effects to interpret non-covalent interactions in binary mixtures of dimethyl carbonate and isomeric cresols through thermophysical, acoustic and spectroscopic studies. J Therm Anal Calorim 129, 1121–1143 (2017). https://doi.org/10.1007/s10973-017-6225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6225-4

Keywords

Navigation