Skip to main content
Log in

Solid–solid phase transition of tris(hydroxymethyl)aminomethane in nanopores of silica gel and porous glass for thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To extend the use of phase change materials (PCMs) of those with good performance, tris(hydroxymethyl)aminomethane (THAM) is embedded in silica gels (SG) (pore diameter, d = 15–100 nm) and in controlled porous glasses (CPG) (nominal d = 12–100 nm). The THAM/SG and THAM/CPG composites are characterized by SEM and XRD. Latent heat storage performance of THAM/SG and THAM/CPG is investigated using differential scanning calorimetry, showing size dependence of phase transition temperature, enthalpy change and supercooling. THAM in the nanopores displays stable transition temperature and heat storage capacity in a short-term thermal cycling. The bulk and the nanosized THAM own the same diffraction patterns. The encapsulation of phase change material in nanoporous media is a promising way of tuning the thermal energy properties of those ideal PCMs for use in a wider range of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anghel EM, Georgiev A, Petrescu S, et al. Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage. J Therm Anal Calorim. 2014;117:557–66.

    Article  Google Scholar 

  2. Al-Abidi AA, Bin Mat S, Sopian K, et al. Review of thermal energy storage for air conditioning systems. Renew Sustain Energy Rev. 2012;16:5802–19.

    Article  CAS  Google Scholar 

  3. Chen Z, Shan F, Cao L, et al. Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage. Sol Energy Mater Sol Cells. 2012;102:131–6.

    Article  CAS  Google Scholar 

  4. Rathod MK, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev. 2013;18:246–58.

    Article  CAS  Google Scholar 

  5. Zalba B, Marín JM, Cabeza LF, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  6. Alba-Simionesco C, Coasne B, Dosseh G, et al. Effects of confinement on freezing and melting. J Phys Condens Matter. 2006;18:R15–68.

    Article  CAS  Google Scholar 

  7. Lu DF, Di YY, Dou JM. Crystal structures and solid–solid phase transitions on phase change materials (1-C n H2n+1NH3)2CuCl4(s) (n = 10 and 11). Sol Energy Mater Sol Cells. 2013;114:1–8.

    Article  CAS  Google Scholar 

  8. Marks SB. The effect of crystal size on the thermal energy storage capacity of thickened Glauber’s salt. Sol Energy. 1983;30:45–9.

    Article  CAS  Google Scholar 

  9. Kousksou T, Jamil A, Rhafiki TE, et al. Paraffin wax mixtures as phase change materials. Sol Energy Mater Sol Cells. 2010;94:2158–65.

    Article  CAS  Google Scholar 

  10. Zhang J, Wang SS, Zhang SD, et al. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 solid nanobowls toward smart heat storage. J Phys Chem C. 2011;115:20061–6.

    Article  CAS  Google Scholar 

  11. Kousksou T, Bruel P, Jamil A, et al. Energy storage: applications and challenges. Sol Energy Mater Sol Cells Part A. 2014;120:59–80.

    Article  CAS  Google Scholar 

  12. Cui W, Wu K, Liu X, et al. Subsolidus binary phase diagram of the perovskite type layer materials (n-C n H2n+1NH3)2ZnCl4 (n = 10, 12, 14). Thermochim Acta. 2011;521:80–3.

    Article  CAS  Google Scholar 

  13. Gao CF, Wang LP, Li QF, et al. Tuning thermal properties of latent heat storage material through confinement in porous media: the case of (1-C n H2n+1NH3)2ZnCl4 (n = 10 and 12). Sol Energy Mater Sol Cells. 2014;128:221–30.

    Article  CAS  Google Scholar 

  14. Zhang Q, Zhao Y, Feng J. Systematic investigation on shape stability of high-efficiency SEBS/paraffin form-stable phase change materials. Sol Energy Mater Sol Cells. 2013;118:54–60.

    Article  CAS  Google Scholar 

  15. Dosseh G, Xia Y, Alba-Simionesco C. Cyclohexane and benzene confined in MCM-41 and SBA-15: confinement effects on freezing and melting. J Phys Chem B. 2003;107:6445–53.

    Article  CAS  Google Scholar 

  16. Adamson AW, Gast AP. Physical chemistry of surfaces: surface tension and adsorption. A Wiley-interscience publication. 1967. pp. 400–8.

  17. Jackson CL, Mckenna GB. The melting behavior of organic materials confined in porous solids. J Chem Phys. 1990;93:9002–11.

    Article  CAS  Google Scholar 

  18. Sun J, Simon SL. The melting behavior of aluminum nanoparticles. Thermochim Acta. 2007;463:32–40.

    Article  CAS  Google Scholar 

  19. Li Y, Qi W, Li Y, et al. Modeling the size-dependent solid–solid phase transition temperature of Cu2S nanosolids. J Phys Chem C. 2012;116:9800–4.

    Article  CAS  Google Scholar 

  20. Sandoval L, Urbassek HM. Finite-size effects in Fe-nanowire solid–solid phase transitions: a molecular dynamics approach. Nano Lett. 2009;9:2290–4.

    Article  CAS  Google Scholar 

  21. Tabuchi Y, Asai K, Rikukawa M, et al. Preparation and characterization of natural lower dimensional layered perovskite-type compounds. J Phys Chem Solids. 2000;61:837–45.

    Article  CAS  Google Scholar 

  22. Genbo S, Zhengdong L, Gongfan H. A new optical crystal—Tris(hydroxymethyl)amlnomethane. J Synth Cryst. 1985;Z1:112.

  23. Strauss R, Braun S, Dou S-Q, et al. Phase diagram of the orientationally order-disorder binary system 2,2-dimethyl-1,3-propanediol/2,2-dimethyl-1,3-diaminopropane [(CH3)2 C(CH2OH)2] x [(CH3)2C(CH2NH2)2]1−x a thermodynamic, X-ray, and 1H-NMR study. Zeitschrift für Naturforschung A. 1996;51:871–81.

    Article  CAS  Google Scholar 

  24. Illeková E, Macová E, Majerník V, et al. Anomalous thermal expansion of thin cetane layer solidified at the inner surface of confining nanoporous silica gel. J Therm Anal Calorim. 2014;116:753–8.

    Article  Google Scholar 

  25. Zhao Q, Chen CD, Wang JL. The effects of psychological ownership and TAM on social media loyalty: an integrated model. Telemat Inform. 2016;33:959–72.

    Article  Google Scholar 

  26. Wang LP, Li QF, Wang C, et al. Size-dependent phase behavior of the hexadecane–octadecane system confined in nanoporous glass. J Phys Chem C. 2014;118:18177–86.

    Article  CAS  Google Scholar 

  27. Iyang Z, Menglin Y. Heat capacity and phase transitions of 2-amino-2-hydroxymethylpropan-1,3-diol from 290 K to 455 K. J Chem Thermodyn. 1990;22:617–22.

    Article  Google Scholar 

  28. Paul A, Shi L, Bielawski CW. A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage. Energy Convers Manag. 2015;103:139–46.

    Article  CAS  Google Scholar 

  29. Wang LY, Zhu L, Sha ZL et al. Characterization, thermal stability, and solid-state phase transition behaviors of gestodene polymorphs and amorphous phase. J Therm Anal Calorim. 2017;127:1533–42.

  30. Montenegro R, Antonietti M, Mastai Y, et al. Crystallization in miniemulsion droplets. J Phys Chem B. 2003;107:5088–94.

    Article  CAS  Google Scholar 

  31. Wang C, Li Q, Wang L, et al. Phase transition of neopentyl glycol in nanopores for thermal energy storage. Thermochim Acta. 2016;632:10–7.

    Article  CAS  Google Scholar 

  32. Kittaka S, Sou K, Yamaguchi T, et al. Thermodynamic and FTIR studies of supercooled water confined to exterior and interior of mesoporous MCM-41. Phys Chem Chem Phys. 2009;11:8538–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from National Natural Science Found of China (No. 21273138) and 4B9A stations in BSRF for assistance with X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Zheng Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, M., Zhang, S., Sui, J. et al. Solid–solid phase transition of tris(hydroxymethyl)aminomethane in nanopores of silica gel and porous glass for thermal energy storage. J Therm Anal Calorim 129, 957–964 (2017). https://doi.org/10.1007/s10973-017-6223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6223-6

Keywords

Navigation