Skip to main content
Log in

Structure and thermal properties of the fritted glazes in SiO2–Al2O3–CaO–MgO–Na2O–K2O–ZnO system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the structure and thermal properties of aluminosilicate fritted glazes in SiO2–Al2O3–CaO–MgO–Na2O–K2O–ZnO system with (4.0 mol%) and without addition of ZnO were examined by GIXRD, FTIR, MAS-NMR and thermal methods (DTA, DIL). It has been found that the all experimental glazes are amorphous material (transparent glazes). On the base of spectroscopic investigations, it was found that zinc ions exist in the network glazes in the octahedral coordination—Zn2+ ions play a network modifier role in structure of glazes. An analysis of the data obtained from thermal tests showed that addition of ZnO into chemical composition results in decrease in glass transition temperature value (T g) for all glazes (DTA, DIL). The coefficient of thermal expansion (α) is decreased as the whole measurement range for one series of fritted glazes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cheng X, Ke S, Wang Q, Wang H, Shui A, Liu P. Characterization of transparent glaze for single-crystalline anorthite porcelain. Ceram Int. 2012;38:4901–8.

    Article  CAS  Google Scholar 

  2. Yekta BE, Alizadeh P, Rezazadeh L. Floor tile glass-ceramic glaze for improvement of glaze surface properties. J Eur Ceram Soc. 2016;26:3809–12.

    Article  Google Scholar 

  3. Bernasconi A, Diella V, Marinoni N, Pavese A, Francescon F. Influence of composition on some industrially relevant properties of traditional sanitary-ware glaze. Ceram Int. 2012;38:5859–70.

    Article  CAS  Google Scholar 

  4. Taylor JR, Bull AC. Ceramic Glaze Technology. Oxford: University Press; 1986.

    Google Scholar 

  5. Eppler RA, Eppler DR. Glazes and Glass Coatings. Westerville J Am Ceram Soc. 2000.

  6. Froberg L, Kronberg T, Hupa L, Hupa M. Influence of firing parameters on phase composition of raw glazes. J Eur Ceram Soc. 2007;27:1671–5.

    Article  Google Scholar 

  7. Amorós JL, Blasco E, Moreno A, Gómez-Tena MP. Sintering of raw glazes for floor and porcelain tiles: a non-isothermal kinetic model. Ceram Int. 2016;42:16169–79.

    Article  Google Scholar 

  8. Atkinson I, Smith ME, Zaharescu M. Examining correlations between composition, structure and properties in zircon-containing raw glazes. Ceram Int. 2012;38:1827–33.

    Article  CAS  Google Scholar 

  9. Pekkan K. The thermal and microstructural behavior of a R2O–RO–(ZnO)–Al2O3–(TiO2)–SiO2 based macro-crystalline raw glaze system. Ceram Int. 2015;41:7881–9.

    Article  CAS  Google Scholar 

  10. Bou E, Moreno A, Escardino A, Gozalbo A. Microstructural study of opaque glazes obtained from frits of the system: SiO2–Al2O3–B2O3–(P2O5)–CaO–K2O–TiO2. J Eur Ceram Soc. 2007;27:1791–6.

    Article  CAS  Google Scholar 

  11. Pekkan K, Karasu B. Zircon-free frits suitable for single fast-firing opaque wall tile glazes and their industrial productions. J Eur Ceram Soc. 2009;29:1571–8.

    Article  CAS  Google Scholar 

  12. Partyka J, Gasek K, Pasiut K, Gajek M. Effect of addition of BaO on sintering of glass–ceramic materials from SiO2–Al2O3–Na2O–K2O–CaO/MgO system. J Therm Anal Calorim. 2016;125:1095–103.

    Article  CAS  Google Scholar 

  13. Atkinson I, Anghel EM, Munteanu C, Voicescu M, Zaharescu M. ZrO2 influence on structure and properties of some alkali lime zinc aluminosilicate glass ceramics. Ceram Int. 2014;40:7337–44.

    Article  CAS  Google Scholar 

  14. Banijamali S. Preparation of glass–ceramic glazes for fast firing applications by CaF2 substitution with B2O3 in the CaO–CaF2–Al2O3–SiO2 system. Ceram Int. 2013;39:8815–22.

    Article  CAS  Google Scholar 

  15. Wang S, Peng Ch, Xiao H, Wu J. Microstructural evolution and crystallization mechanism of zircon from frit glaze. J Eur Ceram Soc. 2015;35:2671–8.

    Article  CAS  Google Scholar 

  16. Pekkan K, Karasu B. Production of opaque frits with low ZrO2 and ZnO contents and their industrial uses for fast single-fired wall tile glazes. J Mater Sci. 2009;44:2533–40.

    Article  CAS  Google Scholar 

  17. Casasola R, Rincón JMa, Romero M. Glass-ceramic glazes for ceramic tiles—a review. J Mater Sci. 2012;47:553–82.

    Article  CAS  Google Scholar 

  18. Mea GD, Gasparotto A, Bettinelli M, Montenero A, Scaglioni R. Chemical durability of zinc-containing glasses. J. Non-Cryst Solids. 1986;84:443–51.

    Article  Google Scholar 

  19. Partyka J, Leśniak M. Preparation of glass–ceramic glazes in the SiO2–Al2O3–CaO–MgO–K2O–Na2O–ZnO system by variable content of ZnO. Ceram Int. 2016;42:8813–24.

    Article  Google Scholar 

  20. Karasu B, Turan S. Effects of cobalt, copper, manganese and titanium oxide additions on the microstructures of zinc containing soft porcelain glazes. J Eur Ceram Soc. 2002;22:1447–55.

    Article  CAS  Google Scholar 

  21. Gasek K, Partyka J, Gajek M, Panna W. Characteristic of synthesis and transformations of hardystonite in willemite glass-crystalline glaze based on thermal analysis. J Therm Anal Calorim. 2016;125:1135–42.

    Article  CAS  Google Scholar 

  22. Cassingha NJ, Stennett M, Bingham P, Hyatt N, Aquilanti G. The structural role of Zn in nuclear waste glasses. Int J Appl Glass Sc. 2011;2:343–53.

    Article  Google Scholar 

  23. Lusvardi G, Malavasi G, Menabue L, Menziani M, Segre U, Carnasciali M, Ubaldini A. A combined experimental and computational approach to (Na2O)1 − x·CaO·(ZnO)x·2SiO2 glasses characterization. J Non-Cryst Solids. 2004;345–346:710–4.

    Article  Google Scholar 

  24. McKeown DA, Muller IS, Buechele AC, Pegg IL. Local environment of Zn in zirconium borosilicate glasses determined by X-ray absorption spectroscopy. J Non-Cryst Solids. 2000;261:155–62.

    Article  CAS  Google Scholar 

  25. Goswami M, Kothiyal G, Montagne L, Delevoye L. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content. J Solid State Chem. 2008;181:269–75.

    Article  CAS  Google Scholar 

  26. Rosenthal A, Garofalini S. Structural role of zinc oxide in silica and soda-silica glasses. J Am Ceram Soc. 1987;70:821–6.

    Article  CAS  Google Scholar 

  27. Xiang Y, Du J, Skinner L, Benmore C, Wren A, Boyd D, Towler M. Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glass: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv. 2013;3:5966–78.

    Article  CAS  Google Scholar 

  28. Bernasconi A, Dapiaggi M, Pavese A, Agostini G, Bernasconi M, Bowron DT. Modeling the structure of complex aluminosilicate glasses: the effect of zinc addition. Am Chem Soc. 2016;120:2525–37.

    Google Scholar 

  29. Silva AMB, Queiroz CM, Agathopoulos S, Correia RN, Fernandes MHV, Oliveira JM. Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS-NMR. J Mol Struct. 2011;986:16–21.

    Article  CAS  Google Scholar 

  30. Clayden NJ, Esposito S, Aronne A, Pernice P. Solid state 11B NMR study of glasses near the barium metaborate stoichiometry. J Non-Cryst Solids. 1999;249:99–105.

    Article  CAS  Google Scholar 

  31. MacDonald SA, Schardt CR, Masiello DJ, Simmons SH. Dispersion analysis of FTIR reflection measurements in silicate glasses. J Non-Cryst Solids. 2000;275:72–82.

    Article  CAS  Google Scholar 

  32. Serra J, González P, Liste S, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med. 2002;13:1221–5.

    Article  CAS  Google Scholar 

  33. Wang F, Stamboulis A, Holland D, Matsuya S, Takeuchi A. Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses. Key Eng Mater. 2008;361–363:825–8.

    Article  Google Scholar 

  34. Partyka J, Sitarz M, Leśniak M, Gasek K, Jeleń P. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2–Al2O3–CaO–MgO–Na2O–K2O system. Spectrochim Acta A. 2015;134:621–30.

    Article  CAS  Google Scholar 

  35. Mozgawa W, Sitarz M, Rokita M. Spectroscopic study of different aluminosilicate structures. J Mol Struct. 1999;511–12:251–7.

    Article  Google Scholar 

  36. Mozgawa W, Sitarz M. Vibrational spectra of aluminosilicate ring structure. J Mol Struct. 2002;614:273–9.

    Article  CAS  Google Scholar 

  37. Sitarz M. The structure of simple silicate glasses in the light of Middle Infrared spectroscopy studies. J Non-Cryst Solids. 2011;357:1603–8.

    Article  CAS  Google Scholar 

  38. Sitarz M, Handke M, Mozgawa W, Galuskin E, Galuskina IO. The non-ring cations influence on silicooxygen rings vibrations. J Mol Struct. 2000;555:357–62.

    Article  CAS  Google Scholar 

  39. Sitarz M, Handke M, Mozgawa W. Rings in the structure of silicate glasses. J Mol Struct. 1999;511–12:281–5.

    Article  Google Scholar 

  40. Sitarz M, Handke M, Mozgawa W. Identification of silico–oxygen rings in SiO2 based on IR spectra. Spectrochim Acta A. 2000;56:1819–23.

    Article  Google Scholar 

  41. Szumera M, Wacławska I, Sułowska J. Influence of CuO and ZnO addition on the multicomponent phosphate glasses: spectroscopic studies. J Mol Struct. 2016;1114:78–83.

    Article  CAS  Google Scholar 

  42. Sen S, Maekawa H, Papatheodorou MG. Short-range structure of invert glasses along the pseudo-binary join MgSiO3 − Mg2SiO4: results from 29Si and 25Mg MAS-NMR spectroscopy. J Phys Chem B. 2009;113:15243–8.

    Article  CAS  Google Scholar 

  43. Barbieri L, Cannillo V, Leonelli C, Montorsi M, Mustarelli P, Siligardi C. Experimental and MD simulations study of CaO−ZrO2−SiO2 glasses. J Phys Chem B. 2003;107:6519–25.

    Article  CAS  Google Scholar 

  44. Atkinson I, Teoreanu I, Mocioiu OC, Smith ME, Zaharescu M. Structure property relations in multicomponent oxide systems with additions of TiO2 and ZrO2 for glaze applications. J Non-Cryst Solids. 2010;356:2437–43.

    Article  CAS  Google Scholar 

  45. Mccloy J, Washton N, Gassman P,  Marcial J, Weaver J, Kukkadapu R. Nepheline crystallization in boron-rich alumino-silicate glasses as investigated by multi-nuclear NMR, Raman, and Mossbauer spectrscopies.  J Non-Cryst Solids. 2015; 409:149–65.

    Article  CAS  Google Scholar 

  46. Leśniak M, Partyka J, Sitarz M. Impact of ZnO on the structure of aluminosilicate glazes. J Mol Struct. 2016;1126:251–8.

    Article  Google Scholar 

  47. Maekawa H, Maekawa T, Kawamura K, Yokokawa T. The structural groups of alkali silicate glasses determined from 29Si MAS-NMR. J Non-Cryst Solids. 1991;127:53–64.

    Article  CAS  Google Scholar 

  48. Stebbins JF. Effects of temperature and composition on silicate glass structure and dynamics Si-29′ NMR results. J Non-Cryst Solids. 1988;106:359–69.

    Article  CAS  Google Scholar 

  49. Oliveira JM, Correia RN, Fernandes MH, Rocha J. Influence of the CaO/MgO ratio on the structure of phase-separated glasses: a solid state 29Si and 31P MAS-NMR study. J Non-Cryst Solids. 2000;265:221–9.

    Article  CAS  Google Scholar 

  50. Murdoch JB, Stebbins JF. High-resolution 29NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations. Am Mineral. 1985;70:332–43.

    CAS  Google Scholar 

  51. Sułowska J, Wacławska I, Szumera M, Olejniczak Z. Characterization of thermally induced of crystalline phases in CuO-containing silicate–phosphate glasses. J Therm Anal Calorim. 2012;108:657–63.

    Article  Google Scholar 

  52. Bernasconi A, Diella V, Marinoni N, Pavese A, Francescon F. Influence of composition on some industrially relevant properties of traditional sanitary-ware glaze. Ceram Int 2012;38:5859–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre, Poland Grant No 2015/19/N/ST8/00486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Leśniak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leśniak, M., Gajek, M., Partyka, J. et al. Structure and thermal properties of the fritted glazes in SiO2–Al2O3–CaO–MgO–Na2O–K2O–ZnO system. J Therm Anal Calorim 130, 165–176 (2017). https://doi.org/10.1007/s10973-017-6183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6183-x

Keywords

Navigation