Skip to main content
Log in

Thermal properties characterization of two promising phase change material candidates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar absorption cooling is a wonderful method to provide cold energy by exploiting solar energy. Phase change materials (PCMs) that store latent thermal energy are indispensible in solar absorption cooling system. It is worthwhile to find new PCMs due to the demanding on the temperature of the stored thermal energy which in turn would power the absorption chiller. In this paper, two compounds: 1-bromo-2-methoxynaphthalene (compound 1) and 2,2′-diphenyl-4,4′-bi(1,3-dioxane)-5,5′-diol (compound 2), were selected as potential PCMs. Their thermal energy storage properties and thermal stability were characterized by differential scanning calorimetry and thermogravimetric analysis. The results showed that both compounds could be applied as good PCMs in solar absorption cooling systems. Compound 1 melted at 356.82 K with the ΔH of 98.81 J g−1, while compound 2 melted in a broad temperature range with the melting point of 466.26 K and the ΔH of 101.4 J g−1. Both compounds exhibited good thermal stability. Furthermore, the molar specific heat capacities of these two compounds were measured by temperature-modulated differential scanning calorimetry from 198.15 K to the temperature that they started to decompose, and the thermodynamic functions of [H TH 298.15] and [S TS 298.15] were calculated based on the specific heat capacities data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li C, Shi H, Cao Y, Wang J, Kuang Y, Tan Y, et al. Comprehensive review of renewable energy curtailment and avoidance: a specific example in China. Renew Sustain Energy Rev. 2015;41:1067–79. doi:10.1016/j.rser.2014.09.009.

    Article  Google Scholar 

  2. Elser M, Huang RJ, Wolf R, Slowik JG, Wang Q, Canonaco F, et al. New insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmos Chem Phys. 2016;16(5):3207–25. doi:10.5194/acp-16-3207-2016.

    Article  CAS  Google Scholar 

  3. Aman MM, Solangi KH, Hossain MS, Badarudin A, Jasmon GB, Mokhlis H, et al. A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renew Sustain Energy Rev. 2015;41:1190–204. doi:10.1016/j.rser.2014.08.086.

    Article  CAS  Google Scholar 

  4. Crabtree GW, Lewis NS. Solar energy conversion. Phys Today. 2007;60(3):37–42.

    Article  CAS  Google Scholar 

  5. Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.

    Article  CAS  Google Scholar 

  6. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45(9–10):1597–615.

    Article  CAS  Google Scholar 

  7. Nithyanandam K, Pitchumani R. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy. 2014;64:793–810. doi:10.1016/j.energy.2013.10.095.

    Article  CAS  Google Scholar 

  8. Zhang H, Xu Q, Zhao Z, Zhang J, Sun Y, Sun L, et al. Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulation. Sol Energy Mater Sol Cells. 2012;102:93–102. doi:10.1016/j.solmat.2012.03.020.

    Article  CAS  Google Scholar 

  9. Zeng JL, Zheng SH, Yu SB, Zhu FR, Gan J, Zhu L, et al. Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials. Appl Energy. 2014;115:603–9. doi:10.1016/j.apenergy.2013.10.061.

    Article  CAS  Google Scholar 

  10. Zeng JL, Gan J, Zhu FR, Yu SB, Xiao ZL, Yan WP, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2014;127:122–8. doi:10.1016/j.solmat.2014.04.015.

    Article  CAS  Google Scholar 

  11. Karaipekli A, Sarı A. Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Sol Energy Mater Sol Cells. 2016;149:19–28. doi:10.1016/j.solmat.2015.12.034.

    Article  CAS  Google Scholar 

  12. Kheradmand M, Azenha M, de Aguiar JLB, Castro-Gomes J. Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings. Energy. 2016;94:250–61. doi:10.1016/j.energy.2015.10.131.

    Article  CAS  Google Scholar 

  13. Roman KK, O’Brien T, Alvey JB, Woo O. Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities. Energy. 2016;96:103–17. doi:10.1016/j.energy.2015.11.082.

    Article  Google Scholar 

  14. Pintaldi S, Perfumo C, Sethuvenkatraman S, White S, Rosengarten G. A review of thermal energy storage technologies and control approaches for solar cooling. Renew Sustain Energy Rev. 2015;41:975–95. doi:10.1016/j.rser.2014.08.062.

    Article  CAS  Google Scholar 

  15. Shkatulov A, Ryu J, Kato Y, Aristov Y. Composite material “Mg(OH)2/vermiculite”: a promising new candidate for storage of middle temperature heat. Energy. 2012;44(1):1028–34. doi:10.1016/j.energy.2012.04.045.

    Article  CAS  Google Scholar 

  16. Lv Y, Zhou W, Yang Z, Jin W. Characterization and numerical simulation on heat transfer performance of inorganic phase change thermal storage devices. Appl Therm Eng. 2016;93:788–96. doi:10.1016/j.applthermaleng.2015.10.058.

    Article  CAS  Google Scholar 

  17. Seo J, Shin D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3–NaNO3–KNO3) salt eutectic for thermal energy storage. Appl Therm Eng. 2016;102:144–8. doi:10.1016/j.applthermaleng.2016.03.134.

    Article  CAS  Google Scholar 

  18. Zhao CY, Ji Y, Xu Z. Investigation of the Ca(NO3)2–NaNO3 mixture for latent heat storage. Sol Energy Mater Sol Cells. 2015;140:281–8. doi:10.1016/j.solmat.2015.04.005.

    Article  CAS  Google Scholar 

  19. Gunasekara SN, Pan R, Chiu JN, Martin V. Polyols as phase change materials for surplus thermal energy storage. Appl Energy. 2016;162:1439–52. doi:10.1016/j.apenergy.2015.03.064.

    Article  CAS  Google Scholar 

  20. Zhang X, Chen X, Han Z, Xu W. Study on phase change interface for erythritol with nano-copper in spherical container during heat transport. Int J Heat Mass Tranf. 2016;92:490–6. doi:10.1016/j.ijheatmasstransfer.2015.08.095.

    Article  CAS  Google Scholar 

  21. Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano. 2015;9(12):11699–707. doi:10.1021/acsnano.5b02917.

    Article  CAS  Google Scholar 

  22. Xiao Z-K, Yin H-Y, Lu J-M. N-Heterocyclic carbene-palladium(II)-1-methylimidazole complex catalyzed α-arylation of symmetric dialkyl ketones with aryl chlorides. Inorg Chim Acta. 2014;423:106–8. doi:10.1016/j.ica.2014.07.061.

    Article  CAS  Google Scholar 

  23. Hosoi S, Ozeki M, Nakano M, Arimitsu K, Kajimoto T, Kojima N, et al. Mechanistic aspects of asymmetric intramolecular Heck reaction involving dynamic kinetic resolution: flexible conformation of the cyclohexenylidene–benzene system. Tetrahedron. 2015;71(15):2317–26. doi:10.1016/j.tet.2015.01.020.

    Article  CAS  Google Scholar 

  24. Karki M, Magolan J. Bromination of olefins with HBr and DMSO. J Org Chem. 2015;80(7):3701–7. doi:10.1021/acs.joc.5b00211.

    Article  CAS  Google Scholar 

  25. Al-Majid AMA, Barakat A, Mabkhot YN, Islam MS. Synthesis and characterization of privileged monodentate phosphoramidite ligands and chiral Brønsted acids derived from D-Mannitol. Int J Mol Sci. 2012;13(3):2727.

    Article  CAS  Google Scholar 

  26. D-f Lu, Y-y Di, J-m Dou. Crystal structures and solid–solid phase transitions on phase change materials (1 − CnH2n + 1NH3)2CuCl4(s) (n = 10 and 11). Sol Energy Mater Sol Cells. 2013;114:1–8. doi:10.1016/j.solmat.2013.02.009.

    Article  Google Scholar 

  27. Wunderlich B, Jin Y, Boller A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93. doi:10.1016/S0040-6031(94)85214-6.

    Article  CAS  Google Scholar 

  28. Danley RL. New modulated DSC measurement technique. Thermochim Acta. 2003;402(1–2):91–8. doi:10.1016/S0040-6031(02)00541-5.

    Article  CAS  Google Scholar 

  29. Rivière L, Caussé N, Lonjon A, Dantras É, Lacabanne C. Specific heat capacity and thermal conductivity of PEEK/Ag nanoparticles composites determined by Modulated-Temperature Differential Scanning Calorimetry. Polym Degrad Stab. 2016;127:98–104. doi:10.1016/j.polymdegradstab.2015.11.015.

    Article  Google Scholar 

  30. Qiu S, Chu H, Zou Y, Xiang C, Zhang H, Sun L, et al. Thermochemical studies of Rhodamine B and Rhodamine 6G by modulated differential scanning calorimetry and thermogravimetric analysis. J Therm Anal Calorim. 2015;123(2):1611–8. doi:10.1007/s10973-015-5055-5.

    Article  Google Scholar 

  31. Archer DG. Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22(6):1441–53. doi:10.1063/1.555931.

    Article  CAS  Google Scholar 

  32. Ginnings DC, Furukawa GT. Heat capacity standards for the range 14 to 1200 °K. J Am Chem Soc. 1953;75(3):522–7. doi:10.1021/ja01099a004.

    Article  CAS  Google Scholar 

  33. Baggett N, Stribblehill P. Asymmetric reduction of ketones by using complexes of lithium tetrahydridoaluminate(III) with 1,4:3,6-dianhydro-D-mannitol and 1,3:4,6-di-O-benzylidene-D-mannitol. J Chem Soc Perkin Trans. 1977;1(10):1123–6. doi:10.1039/p19770001123.

    Article  Google Scholar 

  34. Zeng JL, Yu SB, Cao Z, Yang DW, Sun LX, Zhang L, et al. Synthesize, crystal structure, heat capacities and thermodynamic properties of a potential enantioselective catalyst. J Therm Anal Calorim. 2011;105(3):961–8. doi:10.1007/s10973-011-1486-9.

    Article  CAS  Google Scholar 

  35. Song L-F, Jiang C-H, Zhang J, Sun L-X, Xu F, You W-S, et al. Heat capacities and thermodynamic properties of a novel mixed-ligands MOFs. J Therm Anal Calorim. 2009;100(2):679–84. doi:10.1007/s10973-009-0207-0.

    Article  Google Scholar 

  36. Zhang XF, Wang SF, Wu ZS. Physical chemistry. Wuhan: Huazhong University of Science & Technology Press; 2012.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21003014, 21501015, 21275022), the Natural Science Foundation of Hunan Province, China (13JJ3068), the Scientific Research Fund of Hunan Provincial Education Department (15B0002) and the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (Changsha University of Science & Technology) (2014CL05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Lan Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, SB., Zeng, JL., Sun, SL. et al. Thermal properties characterization of two promising phase change material candidates. J Therm Anal Calorim 129, 189–199 (2017). https://doi.org/10.1007/s10973-017-6152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6152-4

Keywords

Navigation