Skip to main content
Log in

Impact of different nanoparticles on the thermal degradation kinetics of phenolic resin nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of different contents of nano-fillers: carbon black (CB), bentonites [original (Bent) and modified with phosphonium salt (B-TBHP)] and commercial modified montmorillonite (C30B) on the thermal degradation of phenolic resin was studied by thermogravimetric analysis (TG). The obtained results strongly suggest that CB was the most effective filler in improving the thermal stability of the resol-type phenolic matrix. The previous results were associated with the thermal stability of each filler but also with the compatibility between the matrix and the filler and the effect of filler incorporation on the cross-linking degree of the neat matrix. The profile of the apparent activation energy with the conversion of the thermal degradation process for the resol and the nanocomposites was obtained using three isoconversional methods: Friedman, KAS and Vyazovkin. The curves were correlated with the degradation steps of the phenolic resin observed by TG, showing a similar degradation mechanism for all the systems. By means of the method of invariant kinetic parameters, it was possible to estimate the preexponential factor and the activation energy to describe the degradation process of the resol and the nanocomposites in the thermal fragmentation zone, between 350 and 600 °C. It was determined that the Sestak–Berggren model was the one that best describes the thermal degradation experimental data. Then, a comparison between the experimentally obtained and the simulated differential degradation curves shows that the resulting model was certainly accurate to predict the thermal degradation process of the resol and the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gardziella A, Pilato LA, Knop A. Phenolic resins. 2nd ed. Berlin: Springer; 2000.

    Book  Google Scholar 

  2. Lan T, Pinnavaia TJ. Clay-reinforced epoxy nanocomposites. Chem Mater. 1994;6:2216–9.

    Article  CAS  Google Scholar 

  3. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J. Polymer/layered silicate nanocomposites as high performance ablative materials. Appl Clay Sci. 1999;15:67–92.

    Article  CAS  Google Scholar 

  4. Zilg C, Thomann R, Finter J, Mülhaupt R. The influence of silicate modification and compatibilizers on mechanical properties and morphology of anhydridecured epoxy nanocomposites. Macromol Mater Eng. 2000;280:41–6.

    Article  Google Scholar 

  5. Sun Y, Zhang Z, Moon KS, Wong CP. Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci Part B Polym Phys. 2004;42:3849–58.

    Article  CAS  Google Scholar 

  6. Yasmin A, Luo JJ, Abot JL, Daniel IM. Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Technol. 2006;66:2415–22.

    Article  CAS  Google Scholar 

  7. Hsiue GH, Liu YL, Liao HH. Flame-retardant epoxy resins: an approach from organic–inorganic hybrid nanocomposites. J Polym Sci Part A Polym Chem. 2001;39:986–96.

    Article  CAS  Google Scholar 

  8. Balabanovich AI, Hornung A, Merz D, Seifert H. The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins. Polym Degrad Stab. 2004;5:713–23.

    Article  Google Scholar 

  9. Ha SR, Ryu SH, Park SJ, Rheed KY. Effect of clay surface modification and concentration on the tensile performance of clay/epoxy nanocomposites. Mater Sci Eng A. 2007;448:264–8.

    Article  Google Scholar 

  10. Guo B, Jia D, Cai C. Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. Eur Polym J. 2004;40:1743–8.

    Article  CAS  Google Scholar 

  11. Visakh PM, Arao Y. Thermal degradation of polymer blends, composites and nanocomposites. Cham: Springer; 2015.

    Book  Google Scholar 

  12. Naderi A, Mazinani S, Javad Ahmadi S, Sohrabian M, Arasteh R. Modified thermo-physical properties of phenolic resin/carbon fiber composite with nano zirconium dioxide. J Therm Anal Calorim. 2014;117(1):393–401.

    Article  CAS  Google Scholar 

  13. Amirsardari Z, Aghdam RM, Salavati-Niasari M, Shakhesi S. Preparation and characterization of nanoscale ZrB2/carbon–resol composite for protection against high-temperature corrosion. J Therm Anal Calorim. 2015;120(3):1535–41.

    Article  CAS  Google Scholar 

  14. Wolfrum J, Ehrenstein GW. Interdependence between the curing, structure and the mechanical properties of phenolic resins. J Appl Polym Sci. 1999;74:3173–85.

    Article  CAS  Google Scholar 

  15. Choi MH, Chung IJ, Lee JD. Morphology and curing behaviors of phenolic resin-layered silicate nanocomposites prepared by melt intercalation. Chem Mater. 2000;12:2977–83.

    Article  CAS  Google Scholar 

  16. Choi MH, Chung IJ. Mechanical and thermal properties of phenolic resin-layered silicate nanocomposites synthesized by the melt intercalation. J Appl Polym Sci. 2003;90:2316–21.

    Article  CAS  Google Scholar 

  17. Byun HY, Choi MH, Chung IJ. Synthesis and characterization of resol type phenolic resin/layered silicate nanocomposites. Chem Mater. 2001;13:4221–6.

    Article  CAS  Google Scholar 

  18. Wang H, Zhao T, Zhi L, Yan Y, Yu Y. Synthesis of novalac/layered silicate nanocomposites by reaction exfoliation using acid-modified montmorillonite. Macromol Rapid Commun. 2002;23:44–8.

    Article  Google Scholar 

  19. Wang H, Zhao T, Yan Y, Yu Y. Synthesis of resol-layered silicate nanocomposites by reaction exfoliation with acid modified montmorillonite. J Appl Polym Sci. 2004;92:791–7.

    Article  CAS  Google Scholar 

  20. Bahramian AR, Kokabi M. Ablation mechanism of polymer layered silicate nanocomposite heat shield. J Hazard Mater. 2009;166:445–54.

    Article  CAS  Google Scholar 

  21. Manfredi LB, Puglia D, Kenny JM, Vázquez A. Structure-properties relationship in resol/montmorillonite nanocomposites. J Appl Polym Sci. 2007;104(5):3082–9.

    Article  CAS  Google Scholar 

  22. Manfredi LB, Puglia D, Tomasucci A, Kenny JM, Vázquez A. Influence of the clay modification on the properties of resol nanocomposites. Macromol Mater Eng. 2008;293(11):878–86.

    Article  CAS  Google Scholar 

  23. Rivero G, Vázquez A, Manfredi LB. Resol/montmorillonite nanocomposites obtained by in situ polymerization. J Appl Polym Sci. 2009;114:32–9.

    Article  CAS  Google Scholar 

  24. Natali M, Monti M, Puglia D, Kenny JM, Torre L. Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Compos A. 2012;43:174–82.

    Article  Google Scholar 

  25. Koo JH, Natali M, Tate J, Allcorn E. Polymer nanocomposites as ablative materials-a comprehensive review. Int J Energ Mater Chem Propuls. 2013;12(2):119–62.

    CAS  Google Scholar 

  26. Srikanth I, Daniel A, Kumar S, Padmavathi N, Singh V, Ghosal P, Kumar A, Rohini Devi G. Nano silica modified carbon–phenolic composites for enhanced ablation resistance. Scr Mater. 2010;63:200–3.

    Article  CAS  Google Scholar 

  27. Ollier R, Vazquez A, Alvarez VA. Biodegradable nanocomposites based on modified bentonite and polycaprolactone. In: Advances in nanotechnology, vol. 10. New York: Nova Publishers; 2011.

  28. Manfredi LB, de la Osa O, Galego Fernández N, Vázquez A. Structure-properties relationship for resols with different formaldehyde/phenol molar ratio. Polymer. 1999;40:3867–75.

    Article  CAS  Google Scholar 

  29. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  31. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  32. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci Part C Polym Lett. 1964;6:183–95.

    Google Scholar 

  33. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  34. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  35. Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–94.

    Article  CAS  Google Scholar 

  36. Ezquerro CZ, Ric GI, Miñana CC, Bermejo JS. Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl Clay Sci. 2015;111:1–9.

    Article  CAS  Google Scholar 

  37. Xi Y, Ding Z, He H, Frost RL. Structure of organoclays—an X-ray diffraction and thermogravimetric analysis study. J Colloid Interface Sci. 2004;277:116–20.

    Article  CAS  Google Scholar 

  38. Xi Y, Frost RL, He H, Kloprogge T, Bostrom T. Modification of Wyoming montmorillonite surfaces using a cationic surfactant. Langmuir. 2005;21:8675–80.

    Article  CAS  Google Scholar 

  39. Puglia D, Manfredi LB, Vazquez A, Kenny JM. Thermal degradation and fire resistance of epoxy–amine–phenolic blends. Polym Degrad Stab. 2001;73:521–7.

    Article  CAS  Google Scholar 

  40. Lum R, Wilkins CW, Robbins M, Lyons AM. Thermal analysis of graphite and carbon-phenolic composites by pyrolysis-mass spectrometry. Carbon. 1983;21(2):111–6.

    Article  CAS  Google Scholar 

  41. Puglia D, Kenny JM, Manfredi LB, Vázquez A. Influence of chemical composition on the thermal degradation and fire resistance of resol type phenolic resins. Mater Eng. 2001;12(1):55–72.

    CAS  Google Scholar 

  42. Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28(1):1539–641.

    CAS  Google Scholar 

  43. Surender R, Mahendran A, Thamaraichelvan A, Alam S, Vijayakumar CT. Model free kinetics—thermal degradation of bisphenol A based polybismaleimide–cloisite 15a nanocomposites. Thermochim Acta. 2013;562:11–21.

    Article  CAS  Google Scholar 

  44. Pitchaimari G, Sarma KSS, Varshney L, Vijayakumar CT. Influence of the reactive diluent on electron beam curable funtionalized N-(4-hydroxyl phenyl) maleimide derivatives—studies on thermal degradation kinetics using model free approach. Thermochim Acta. 2014;597:8–18.

    Article  CAS  Google Scholar 

  45. Goswami A, Srivastava G, Umarji AM, Madras G. Thermal degradation kinetics of poly(trimethylol propane triacrylate)/poly(hexane diol diacrylate) interpenetrating polymer network. Thermochim Acta. 2012;547:53–61.

    Article  CAS  Google Scholar 

  46. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  47. Budrugeac P, Criado JM, Gotor FJ, Malek J, Perez-Maqueda LA, Segal E. On the evaluation of the nonisothermal kinetic parameters of (GeS2)(0.3)(Sb2S3)(0.7) crystallization using the IKP method. Int J Chem Kinet. 2004;36:309–15.

    Article  CAS  Google Scholar 

  48. Vyazovkin S, Linert W. False isokinetic relationships found in the nonisothermal decomposition of solids. Chem Phys. 1995;193:109–18.

    Article  CAS  Google Scholar 

  49. Perez-Maqueda LA, Criado JM, Gotor FJ, Malek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106(12):2862–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT’12-1983; PICT2013-2455) and Universidad Nacional de Mar del Plata (15/G378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Manfredi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaro, L., D’Amico, D.A., Alvarez, V.A. et al. Impact of different nanoparticles on the thermal degradation kinetics of phenolic resin nanocomposites. J Therm Anal Calorim 128, 1463–1478 (2017). https://doi.org/10.1007/s10973-017-6103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6103-0

Keywords

Navigation