Skip to main content
Log in

Thermal characterisation of raw aluminosilicate glazes in SiO2–Al2O3–CaO–K2O–Na2O–ZnO system with variable content of ZnO

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal properties of raw aluminosilicate ceramic glazes in the multicomponent system of SiO2–Al2O3–CaO–K2O–Na2O–ZnO modified by ZnO addition were studied by differential thermal analysis (DTA), dilatometry (DIL), hot-stage microscopy (HSM), X-ray diffraction and fourier transform infrared spectroscopy (FTIR). Using the method of differential thermal analysis, the ways in which zinc oxides affect the temperature of transition (T g), crystallisation (T c) were determined. An analysis of the DTA data obtained during thermal tests showed that an increase in ZnO content results in decreasing the T g value. Also, the influence of ZnO on characteristic temperatures and viscosity of glazes was checked. The introduction of zinc oxide (ZnO) into the glaze composition contributes to the decrease in viscosity of such glazes. An increasing ZnO content in the glazes also causes the reduction in softening (T s), half-sphere (T half-sphere) and fusion (T fusion) temperatures. The mid-infrared spectroscopy showed that the thermal properties of glazes in SiO2–Al2O3–CaO–K2O–Na2O–ZnO system modified by addition of ZnO can be associated with the depolymerising influence of zinc ions on the structure of the tested glazes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taylor JR, Bull AC. Ceramic glaze technology. Oxford: Pergamon Press; 1986.

    Google Scholar 

  2. Eppler RA, Eppler DR. Glazes and glass coatings. Westerville: Journal of the American Ceramic Society; 2000.

    Google Scholar 

  3. Froberg L, Kronberg T, Hupa L, Hupa M. Influence of firing parameters on phase composition of raw glazes. J Eur Ceram Soc. 2007;27:1671–5.

    Article  Google Scholar 

  4. Ozturk ZB, Yıldız B. The effect of different fluxes on thermal behaviour of floor tile glazes. Acta Phys Pol A. 2015;127:1183–5.

    Article  Google Scholar 

  5. Shelby JE. Introduction to glass science and technology. Cambrigde: Athenaeum Press Ltd.; 1997.

    Google Scholar 

  6. Doremus RH. Glass science. New York: Wiley; 1994.

    Google Scholar 

  7. Lewis MH. Glasses and glass ceramics. New York: Chapman and Hall; 1989.

    Book  Google Scholar 

  8. Handke M, Mozgawa W. Vibrational spectroscopy of the amorphous silicates. Vibra Spectro. 1993;5:75–84.

    Article  CAS  Google Scholar 

  9. Gibbs JH, Dimarzio EA. Nature of the glass transition and the glassy state. J Chem Phys. 1958;28:373–83.

    Article  CAS  Google Scholar 

  10. Handke M, Mozgawa W, Nocuń N. Specific features of the IR spectra of silicate glasses. J Mol Struct. 1994;325:129–36.

    Article  CAS  Google Scholar 

  11. Stoch L. Polish ceramic bulletin 5. Ceramics. 1993;42:21.

    Google Scholar 

  12. Labet V, Colomban P. Vibrational properties of silicates: a cluster model able to reproduce the effect of SiO4 polymerization on Raman intensities. J Non-Cryst Solids. 2013;370:10–7.

    Article  CAS  Google Scholar 

  13. Jamaludin AR, Kasim SR, Ahmad ZA. The effect of CaCO3 addition on the crystallization behavior of ZnO crystal glaze fired at different gloss firing and crystallization temperature. Sci Sin. 2010;42:345–55.

    Article  CAS  Google Scholar 

  14. Avramow I. Viscosity in disordered media. J Non-Cryst Solids. 2015;351:3163–73.

    Article  Google Scholar 

  15. Avramow I. Interrelation between the parameters of equations of viscous flow and chemical composition of glass forming melts. J Non-Crys Solids. 2011;357:391–6.

    Article  Google Scholar 

  16. Mauro J, Yue Y, Ellison A, Gupta P, Allan D. Viscosity of glass-forming liquids. Proc Natl Acad Sci USA. 2009;106:19780–4.

    Article  CAS  Google Scholar 

  17. Avramow I. Dependence of the parameters of equations of viscous flow on chemical composition of silicate melts. J Non-Crys Solids. 2011;357:3841–6.

    Article  Google Scholar 

  18. Isard JO. The mixed alkali effect in glass. J Non-Cryst Solids. 1969;1:235–61.

    Article  CAS  Google Scholar 

  19. Day DE. Mixed alkali glasses—their properties and uses. J Non-Cryst Solids. 1976;21:343–72.

    Article  CAS  Google Scholar 

  20. Poole JP, Gensamer M. Systematic study of effect of oxide constituents on viscosity of silicate glasses at annealing temperatures. J Am Ceram Soc. 1949;32:220–9.

    Article  CAS  Google Scholar 

  21. Poole JP. Low-temperature viscosity of alkali silicate glasses. J Am Ceram Soc. 1949;32:230–3.

    Article  CAS  Google Scholar 

  22. Avramov I, Rüssel C, Keding R. Effect of chemical composition on viscosity of oxide glasses. J Non-Cryst Solids. 2003;324:29–35.

    Article  CAS  Google Scholar 

  23. Lyon KC. Prediction of the Viscosities of Soda-Lime Silica Glasses. J Res Natl Bur Stand. 1974;78A:497–504.

    Article  Google Scholar 

  24. Berg G, Ludwig A. Mixed oxide effect in an ion-exchanged glass. J Non-Cryst Solids. 1994;170:109–11.

    Article  CAS  Google Scholar 

  25. Tomandl G, Schaeffer HA. The mixed-alkali effect—a permanent challenge. J Non-Cryst Solids. 1985;73:179–96.

    Article  CAS  Google Scholar 

  26. Kim S-K, Hwang J. Influence of BaO/(SrO + BaO) on some thermal properties of R2O–RO–SiO2 glasses for plasma display panel substrate. Glass Sci Tech. 1999;72:393–7.

    CAS  Google Scholar 

  27. Lapp JC, Shelby JE. The mixed alkali effect in sodium and potassium galliosilicate glasses I. Glass transformation temperatures. J Non-Cryst Solids. 1986;84:463–7.

    Article  CAS  Google Scholar 

  28. Lapp JC, Shelby JE. The mixed alkali effect in sodium and potassium galliosilicate glasses II. DC electrical conductivity. J Non-Cryst Solids. 1986;86:350–60.

    Article  CAS  Google Scholar 

  29. Kim S-K, Lee S-M. Viscosity behavior and mixed alkali effect of alkali aluminosilicate glass melts. J Ceram Soc Japan. 1997;105:827–32.

    Article  CAS  Google Scholar 

  30. Beam JK. Effect of opacifiers on fused viscosity of feldspathic glazes. J Am Ceram Soc. 1943;26:205–12.

    Article  CAS  Google Scholar 

  31. Lee S-M, Kim S-K, Kim H-T. Crystallization behavior and mechanical properties of porcelain bodies containing zinc oxide additions. J Eur Ceram Soc. 2005;25:1829–34.

    Article  CAS  Google Scholar 

  32. Tulyaganov DU, Agathopoulos S, Fernandes HR, Ferreira JMF. The influence of incorporation of ZnO-containing glazes on the properties of hard porcelains. J Eur Ceram Soc. 2007;27:1665–70.

    Article  CAS  Google Scholar 

  33. Atkinson I, Angheln EM, Munteanu C, Voicescu M, Zaharescu M. ZrO2 influence on structure and properties of some alkali lime zinc aluminosilicate glass ceramics. Ceram Int. 2014;40:7337–44.

    Article  CAS  Google Scholar 

  34. Pekkan K. The thermal and microstructural behavior of a R2O–RO–(ZnO)–Al2O3–(TiO2)–SiO2 based macro-crystalline raw glaze system. Ceram Int. 2015;41:7881–9.

    Article  CAS  Google Scholar 

  35. Demirkesen E, Maytalman E. Effect of Al2O3 additions on the crystallization behaviour and bending strength of a Li2O–ZnO–SiO2 glass-ceramic. Ceram Int. 2011;27:99–104.

    Article  Google Scholar 

  36. Sułowska J, Wacławska I, Szumera M. Comparative study of zinc addition effect on thermal properties of silicate and phosphate glasses. J Therm Anal Calorim: DOI; 2016. doi:10.1007/s10973-015-5044-8.

    Google Scholar 

  37. Leśniak M, Partyka J, Sitarz M. Impact of ZnO on the structure of aluminosilicate glazes. J Mol Struct. 2016;1126:251–8.

    Article  Google Scholar 

  38. Yekta B, Alizadeh P, Rezazadeh L. Synthesis of glass-ceramic glazes in the ZnO–Al2O3–SiO2–ZrO2 system. J Eur Ceram Soc. 2007;27:2311–5.

    Article  CAS  Google Scholar 

  39. Rudkovskaya NV, Mikhailenko NY. Decorative zinc-containing crystalline glazes for ornamental ceramics. Glass Ceram. 2001;58:387–90.

    Article  CAS  Google Scholar 

  40. Parmelee CW. Ceramic glazes. Boston: Publishing Company. Boston; 1973. p. 544–5.

    Google Scholar 

  41. Beall GH, Pinckney LR. Nanophase glass-ceramics. J Am Ceram Soc. 1999;82:5–16.

    Article  CAS  Google Scholar 

  42. Fredericci C, Yoshimura HN, Molisani AL, Pinto MM, Cesar PF. Effect of temperature and heating rate on the sintering of leucite-based dental porcelains. Ceram Int. 2011;37:1073–8.

    Article  CAS  Google Scholar 

  43. He F, Zheng Y, Xie J. Preparation and Properties of CaO-Al2O3-SiO2 glass-ceramics by sintered frits particle from mining wastes. Sci Sin. 2014;46:353–63.

    Article  Google Scholar 

  44. Lago DC, Prado MO. Dehydroxilation and crystallization of glasses: a DTA study. J Non-Cryst Solids. 2013;381:12–6.

    Article  CAS  Google Scholar 

  45. Cabral AA, Fredericci C Jr, Zanotto ED. A test of the Hruby parameter to estimate glass-forming ability. J Non-Crys Solids. 1997;219:182–6.

    Article  CAS  Google Scholar 

  46. Avramov I, Zanotto ED, Prado MO. Glass-forming ability versus stability of silicate glasses. II. Theoretical demonstration. J Non-Crys Solids. 2003;320:9–20.

    Article  CAS  Google Scholar 

  47. Achmed M, Earl DA. Characterizing glaze-melting behaviour via HSM. Am Ceram Soc Bull. 2002;81:47–51.

    Google Scholar 

  48. Salem SH, Jazayeri SH, Bondioli F, Allahverdi A, Shirvani M. Characterizing thermal behavior of ceramic glaze containing nano-sized cobalt-aluminate pigment by hot stage microscopy. Thermochim Acta A. 2011;521:191–6.

    Article  CAS  Google Scholar 

  49. Brekhovskikh SM, Tyul’nin VA, Mamedov ÉK, Shalunenko NI. Spectroscopic investigation of structure and local radiational centers of glasses of the system Al2O3–SiO2. J App Spectrosc. 1977;26:651–4.

    Article  Google Scholar 

  50. Sitarz M. The structure of simple silicate glasses in the light of Middle Infrared spectroscopy studies. J Non-Cryst Solids. 2011;357:1603–8.

    Article  CAS  Google Scholar 

  51. Partyka J, Sitarz M, Leśniak M, Gasek K, Jeleń P. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2–Al2O3–CaO–MgO–Na2O–K2O system. Spectrochim Acta A. 2015;134:621–30.

    Article  CAS  Google Scholar 

  52. Sitarz M, Handke M, Mozgawa W. Identification of silicooxygen rings in SiO2 based on IR spectra. Spectrochim Acta A. 2000;56:1819.

    Article  Google Scholar 

  53. Sitarz M, Handke M, Mozgawa W. Rings in the structure of silicate glasses. J Mol Struct. 1999;511–512:281–5.

    Article  Google Scholar 

  54. Mozgawa W, Sitarz M. Vibrational spectra of aluminosilicate ring structures. J Mol Struct. 2002;614:273–9.

    Article  CAS  Google Scholar 

  55. Sitarz M, Handke M, Mozgawa W, Galuskin E, Galuskina IO. The non-ring cations influence on silicooxygen rings vibrations. J Mol Struct. 2000;555:357–62.

    Article  CAS  Google Scholar 

  56. Sitarz M, Mozgawa W, Handke M. Vibrational spectra of complex ring silicate anions—method of recognition. J Mol Struct. 1997;404:193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre, Poland, Grant No. 2015/19/N/ST8/00486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Leśniak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leśniak, M., Gajek, M., Partyka, J. et al. Thermal characterisation of raw aluminosilicate glazes in SiO2–Al2O3–CaO–K2O–Na2O–ZnO system with variable content of ZnO. J Therm Anal Calorim 128, 1343–1351 (2017). https://doi.org/10.1007/s10973-016-6085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6085-3

Keywords

Navigation