Skip to main content
Log in

Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dicyclohexyl-terephthalamide (DCHT) is an efficient and partially soluble nucleating agent for isotactic polypropylene. Its properties, nucleating efficiency and selectivity were characterized using infrared spectroscopy, calorimetry and polarized light microscopy techniques with special attention to the dissolution and recrystallization of DCHT in the iPP melt. The mechanical properties of the nucleated samples were studied using standard tensile tests. It was found that DCHT possesses dual (α and β) nucleating ability. DCHT is soluble in polypropylene melt and recrystallized from the melt during the cooling. It was observed that a special supermolecular structure is formed in its presence, where micron-sized α-iPP is dispersed finely in the β-iPP matrix. This unique structure promoted good stiffness and toughness simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Meille SV, Ferro DR, Bruckner S, Lovinger AJ, Padden FJ. Structure of beta-isotactic polypropylene—a long-standing structural puzzle. Macromolecules. 1994;27(9):2615–22.

    Article  CAS  Google Scholar 

  2. Padden FJ, Keith HD. Spherulitic crystallization in polypropylene. J Appl Phys. 1959;30:1479–84.

    Article  CAS  Google Scholar 

  3. Lotz B, Wittmann JJ, Lovinger AJ. structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:4979–92.

    Article  CAS  Google Scholar 

  4. Lotz B. A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules. 2014;47(21):7612–24.

    Article  CAS  Google Scholar 

  5. Varga J. Beta-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B Phys. 2002;B41(4–6):1121–71.

    Article  CAS  Google Scholar 

  6. Grein C. Toughness of neat, rubber modified and filled beta-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci. 2005;188:43–104.

    Article  CAS  Google Scholar 

  7. Ikeda N, Kobayashi T, Killough L, editors. Novel beta-nucleator for polypropylene. Polypropylene ‘96. World Congress; 18–20 Sept 1996, Zürich.

  8. Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly(propylene), beta phase. Macromolecules. 1998;31(3):807–14.

    Article  CAS  Google Scholar 

  9. Lotz B. Alpha and beta phases of isotactic polypropylene: a case of growth kinetics ‘phase reentrency’ in polymer crystallization. Polymer. 1998;39(19):4561–7.

    Article  CAS  Google Scholar 

  10. Mathieu C, Thierry A, Wittmann JC, Lotz B. Specificity and versatility of nucleating agents toward isotactic polypropylene crystal phases. J Polym Sci, Part B: Polym Phys. 2002;40(22):2504–15.

    Article  CAS  Google Scholar 

  11. Mohmeyer N, Schmidt HW, Kristiansen PM, Altstadt V. Influence of chemical structure and solubility of bisamide additives on the nucleation of isotactic polypropylene and the improvement of its charge storage properties. Macromolecules. 2006;39(17):5760–7.

    Article  CAS  Google Scholar 

  12. Zhang Y-F, Xin Z. Isothermal crystallization behaviors of isotactic polypropylene nucleated with α/β compounding nucleating agents. J Polym Sci, Part B: Polym Phys. 2007;45(5):590–6.

    Article  CAS  Google Scholar 

  13. Xu Y, Du H, Gu M. Effects of acid binding agents on synthesis of N,N′-bis-(cyclohexyl)-terephthalamide. Petrochem Technol. 2013;42:1148–53.

    CAS  Google Scholar 

  14. Xiao W, Wu P, Feng J. Effect of beta-nucleating agents on crystallization and melting behavior of isotactic polypropylene. J Appl Polym Sci. 2008;108(5):3370–9.

    Article  CAS  Google Scholar 

  15. Li XX, Wu HY, Huang T, Shi YY, Wang Y, Xiang FM, et al. Beta/alpha transformation of beta-polypropylene during tensile deformation: effect of crystalline morphology. Colloid Polym Sci. 2010;288(16–17):1539–49.

    Article  CAS  Google Scholar 

  16. Zhang RH, Shi D, Tjong SC, Li RKY. Study on the beta to alpha transformation of polypropylene crystals in compatibilized blend of polypropylene/polyamide-6. J Polym Sci B: Polym Phys Ed. 2007;45(19):2674–82.

    Article  CAS  Google Scholar 

  17. Zhang Y-F. Crystallization and melting behaviors of isotactic polypropylene nucleated with compound nucleating agents. J Polym Sci, Part B: Polym Phys. 2008;46(9):911–6.

    Article  CAS  Google Scholar 

  18. Dong M, Guo Z, Su Z, Yu J. The effects of crystallization condition on the microstructure and thermal stability of istactic polypropylene nucleated by beta-form nucleating agent. J Appl Polym Sci. 2011;119(3):1374–82.

    Article  CAS  Google Scholar 

  19. Zhou X, Feng JC, Cheng D, Yi JJ, Wang L. Different crystallization behavior of Olefin block copolymer in alpha- and beta-polypropylene matrix. Polymer. 2013;54(17):4719–27.

    Article  CAS  Google Scholar 

  20. Chen YH, Mao YM, Li ZM, Hsiao BS. Competitive growth of alpha- and beta-crystals in beta-nucleated isotactic polypropylene under shear flow. Macromolecules. 2010;43(16):6760–71.

    Article  CAS  Google Scholar 

  21. Nie M, Han R, Wang Q. Formation and alignment of hybrid Shish-Kebab morphology with rich beta crystals in an isotactic polypropylene pipe. Ind Eng Chem Res. 2014;53(10):4142–6.

    Article  CAS  Google Scholar 

  22. Liu H, Huo H. Crystal phases, structure, and orientation in isotactic polypropylene after isothermal crystallization under oscillatory shear as a function of nucleation agent. Colloid Polym Sci. 2014;292(4):849–61.

    Article  CAS  Google Scholar 

  23. Chen YH, Huang ZY, Li ZM, Tang JH, Hsiao BS. Simultaneous improvement of strength and toughness in fiber reinforced isotactic polypropylene composites by shear flow and a beta-nucleating agent. RSC Adv. 2014;4(28):14766–76.

    Article  CAS  Google Scholar 

  24. Fan JS, Feng JC. Study on beta-nucleated controlled-rheological polypropylene random copolymer: crystallization behavior and a possible degradation mechanism. Ind Eng Chem Res. 2013;52(2):761–70.

    Article  CAS  Google Scholar 

  25. Menyhárd A, Varga J, Molnár G. Comparison of different beta-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83(3):625–30.

    Article  Google Scholar 

  26. Varga J, Menyhárd A. Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules. 2007;40(7):2422–31.

    Article  CAS  Google Scholar 

  27. Varga J, Stoll K, Menyhárd A, Horváth Z. Crystallization of isotactic polypropylene in the presence of a beta-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;121:1469–80.

    Article  CAS  Google Scholar 

  28. Bruno TJ, Svoronos PDN. CRC handbook of fundamental spectroscopic correlation charts. Boca Raton: CRC Press Taylor & Francis Group; 2005.

    Book  Google Scholar 

  29. Varga J. Melting memory effect of the beta-modification of polypropylene. J Therm Anal. 1986;31(1):165–72.

    Article  CAS  Google Scholar 

  30. Li J, Cheung W. A correction function to determine the beta-fusion heat in a mixture of alfa- and beta-PP. J Therm Anal Calorim. 2000;61(3):757–62.

    Article  CAS  Google Scholar 

  31. Wang B, Chen Z, Kang J, Yang F, Chen J, Cao Y, et al. Influence of melt structure on the crystallization behavior and polymorphic composition of polypropylene random copolymer. Thermochim Acta. 2015;604:67–76.

    Article  CAS  Google Scholar 

  32. Chen ZF, Kang WL, Kang J, Chen JY, Yang F, Cao Y, et al. Non-isothermal crystallization behavior and melting behavior of Ziegler-Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component beta-nucleation agent. Polym Bull. 2015;72(12):3283–303.

    Article  CAS  Google Scholar 

  33. Lin ZD, Chen C, Guan ZX, Li MQ, Guo GH, Xian JM, et al. The Beta-nucleated ternary composites of polypropylene/nano-CaCO3/short poly(ethylene-terephthalate) fiber. J Therm Anal Calorim. 2013;114(1):229–37.

    Article  CAS  Google Scholar 

  34. Krache R, Benavente R, Lopez-Majada JM, Perena JM, Cerrada ML, Perez E. Competition between alpha, beta, and gamma polymorphs in beta-nucleated metallocenic isotactic polypropylene. Macromolecules. 2007;40(19):6871–8.

    Article  CAS  Google Scholar 

  35. Tao Y, Pan Y, Zhang Z, Mai K. Non-isothermal crystallization, melting behavior and polymorphism of polypropylene in beta-nucleated polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J. 2008;44(4):1165–74.

    Article  CAS  Google Scholar 

  36. Kang J, He J, Chen Z, Yu H, Chen J, Yang F, et al. Investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotube composites nucleated with beta-nucleating agent. J Therm Anal Calorim. 2015;119(3):1769–80.

    Article  CAS  Google Scholar 

  37. Dai X, Zhang Z, Chen C, Li M, Tan Y, Mai K. Non-isothermal crystallization kinetics of montmorillonite filled beta-isotactic polypropylene nanocomposites. J Therm Anal Calorim. 2015;121(2):829–38.

    Article  CAS  Google Scholar 

  38. Chen C, Zhang Z, Ding Q, Dai X, Mai K. From alpha- to beta-crystallization in multi-walled carbon nanotubes-filled polypropylene nanocomposites. J Therm Anal Calorim. 2015;119(3):1781–91.

    Article  CAS  Google Scholar 

  39. Horváth Z, Gyarmati B, Menyhárd A, Doshev P, Gahleitner M, Varga J, et al. The role of solubility and critical temperatures for the efficiency of sorbitol clarifiers in polypropylene. RSC Adv. 2014;4(38):19737–45.

    Article  Google Scholar 

  40. Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW. The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene)sorbitol: phase behavior, nucleation, and optical properties. Macromolecules. 2003;36(14):5150–6.

    Article  CAS  Google Scholar 

  41. Kristiansen M, Tervoort T, Smith P. Synergistic gelation of solutions of isotactic polypropylene and bis-(3,4-dimethyl benzylidene) sorbitol and its use in gel-processing. Polymer. 2003;44(19):5885–91.

    Article  CAS  Google Scholar 

  42. Blomenhofer M, Ganzleben S, Hanft D, Schmidt H-W, Kristiansen M, Smith P, et al. Designer nucleating agents for polypropylene. Macromolecules. 2005;38(9):3688–95.

    Article  CAS  Google Scholar 

  43. Varga J, Fujiwara Y, Ille A. Beta-alpha-bifurcation of growths during the spherulitic crystallization of polypropylene. Period Polytech Chem Eng. 1990;34(4):255–71.

    CAS  Google Scholar 

  44. Fujiyama M. Structures and properties of injection moldings of beta-crystal nucleator-added polypropylenes: I. Effect of beta-crystal nucleator content. Int Polym Proc. 1995;10(2):172–8.

    Article  CAS  Google Scholar 

  45. Fujiyama M. Structure and properties of injection moldings of beta-crystal nucleator-added polypropylene: II. Effect of Mfi of base resin. Int Polym Proc. 1995;10(3):251–4.

    Article  CAS  Google Scholar 

  46. Varga J. Crystallization, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites. London: Chapmann & Hall; 1995. p. 56–115.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Scientific Research Fund of Hungary (OTKA Grant No PD 109346) for this project on the structure–property correlations of polymeric materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfréd Menyhárd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horváth, F., Gombár, T., Varga, J. et al. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim 128, 925–935 (2017). https://doi.org/10.1007/s10973-016-6057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6057-7

Keywords

Navigation