Skip to main content
Log in

Simulative aurintricarboxylic acid molecular docking with antitumor activity for its VO(II), Cr(III), Mn(II) and Fe(III) complexes, HF/DFT modeling and elaborated EPR studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A synthesized aurintricarboxylic acid (ATA) complex was deliberately investigated. Spectral, thermal, theoretical and antitumor studies are accomplished in this study. Elaborated electronic and EPR considerations are introducing parameters support the structural discussion of complexes. Octahedral geometry is proposed for all complexes except VO(II) is a square-pyramidal configuration. Molecular modeling utilizing Gaussian 09 program (HF/DFT) was used to verify the mode of bonding through the optimized geometries as well as essential quantum parameters were calculated using frontier energies (E HOMO & E LUMO). The soft character of the complexes may expect their excellent biological feature. The molecular docking computational achievement displays distinguished bounds of ATA drug with human colorectal carcinoma and human hepatic carcinoma. However, the interaction with human breast carcinoma receptor is completely absent. This behavior may clarify the antitumor activity of the complexes under investigation. The experimental work was supported with docking for carcinoma receptors used experimentally. VO(II) complex displays distinguished inhibition activity toward human carcinoma used. This is pointed to the other important use for ATA drug complexes exceeding the antibacterial field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Michal H, Rachel B, Avraham K. Aurintricarboxylic acid Induces a distinct activation of the IGF-I receptor SIGNALING within MDA-231 Cells. Endocrinology. 2002;143:837.

    Article  Google Scholar 

  2. KadhierA F. Spectrophotometric study and characterization of aurintricarboxylic acid as analytical reagent for manganese (II) determination. J Kerbala Univ. 2009;7:190.

    Google Scholar 

  3. Skidmore AF, BeebeeT J. Characterization and use of the potent ribonuclease inhibitor aurintricarboxylic acid for the isolation of RNA from animal tissues. Biochem J. 1989;263:73.

    Article  CAS  Google Scholar 

  4. Delol H. Modified method for preparation of aurintricarboxylic acid and prepare of it’s chromium (III) complex: study its interaction with some human serum proteins. J Kerbala Univ. 2007;5:65.

    Google Scholar 

  5. Willing A, Follman H, Auling G. Ribonucleotidereducyase of brevibacterium-ammoniagenes is a manganese enzyme. Eur J Biochem. 1988;170:603.

    Article  CAS  Google Scholar 

  6. Triller MU, Hsieh WY, Pecoraro VL, Rompel A, Krebs B. Preparation of highly efficient manganese catalase mimics. Inorg Chem. 2002;41:5544.

    Article  CAS  Google Scholar 

  7. Gasser G, Ott I, Metzler-Nolte N. Organometallic anticancer compounds. J Med Chem. 2011;54:3.

    Article  CAS  Google Scholar 

  8. Mitic N, Noble CJ, Gahan LR, Hanson GR, Schenk G. Metal-ion mutagenesis: conversion of a purple acid phosphatase from sweet potato to a neutral phosphatase with the formation of an unprecedented catalytically competent MnIIMnII active site. J Am Chem Soc. 2009;131:8173.

    Article  CAS  Google Scholar 

  9. Russo MG, Vega Hissi EG, Rizzi AC, Brondino CD, Salinas Ibanñez AG, Vega AE, Silva HJ, Mercader R, Narda GE. Synthesis, physicochemical characterization, DFT calculation and biological activities of Fe(III) and Co(II)-omeprazole complexes Potential application in the Helicobacter pylori eradication. J Mol Struct. 2014;1061:5.

    Article  CAS  Google Scholar 

  10. Süss-Fink G, Cuervo LG, Therrien B, Stoeckli-Evans H, Shulpin GB. Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure, and catalytic potential. Inorg Chim Acta. 2004;357:475.

    Article  Google Scholar 

  11. Tracey AS, Crans DC. Vanadium Compounds. Chemistry, Biochemistry and Therapeutic Applications; ACS Symposium Series 711; ACS: Washington, D.C; 1998.

  12. Thompson KH, McNeill JH. OrviC. Vanadium compounds as insulin mimics. Chem Rev. 1999;99:2561.

    Article  CAS  Google Scholar 

  13. Dong Y, Narla RK, Sudbeck E, Uckun FM. Synthesis, X-ray structure, and anti-leukemic activity of oxovanadium(IV) complexes. J Inorg Biochem. 2000;78:321.

    Article  CAS  Google Scholar 

  14. Du S, Feng J, Lu X, Wangab G. The syntheses and characterizations of vanadium complexes with 1,2-dihydroxyanthraquinone and the structure–effect relationship in their in vitroanticancer activities. Dalton Trans. 2013;42:9699.

    Article  CAS  Google Scholar 

  15. Vogel AI. Text book of quantitative inorganic analysis. London: Longman; 1986.

    Google Scholar 

  16. Frisch MJ, et al. Gaussian 09. Gaussian Inc, Wallingford, CT: Revision D; 2010.

    Google Scholar 

  17. Schultz N, Zhao Y, Truhlar DG. Databases for transition element bonding: metal–metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J Phys Chem A. 2005;109:4388.

    Article  CAS  Google Scholar 

  18. Schultz N, Zhao Y, Truhlar DG. Density functionals for inorganometallic and organometallic chemistry. J Phys Chem A. 2005;109:11127.

    Article  CAS  Google Scholar 

  19. Quintal MM, Karton A, Iron MA, Boese AD, Martin JML. Benchmark study of DFT functionals for late-transition-metal reactions. J Phys Chem A. 2006;110:709.

    Article  CAS  Google Scholar 

  20. DenningtonR, Keith T, Millam J. GaussView, Version 4.1.2, SemichemInc, Shawnee Mission, KS;2007.

  21. Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 1998;17:490.

    Article  Google Scholar 

  22. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19:1639.

    Article  CAS  Google Scholar 

  23. Solis FJ, Wets RJB. Minimization by random search techniques. Math Oper Res. 1981;6:19.

    Article  Google Scholar 

  24. Geary W. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. J Coord Chem Rev. 1971;7:81.

    Article  CAS  Google Scholar 

  25. Nakamoto K, McCarthy PJ. Spectroscopy and structure of metal chelate compounds. New York: Wiley; 1968.

    Google Scholar 

  26. El-Metwally NM, El-Shazly RM, Gabr IM, El-AsmyAA. Physical and spectroscopic studies on novel vanadyl complexes of some substituted thiosemicarbazides. SpectrochimicaActa, Part A.2005;61:1113.

  27. El-Metwaly NM. Spectral and biological investigation of 5-hydroxyl-3-oxopyrazoline 1-carbothiohydrazide and its transition metal complexes. Transition Met Chem. 2007;32:88.

    Article  CAS  Google Scholar 

  28. Price ER, Wasson JR. Complexes with sulfur and selenium donors—X chromium(III) piperidyldithiocarbamates. J Inorg Nucl Chem. 1974;36:67.

    Article  CAS  Google Scholar 

  29. Jorgensen CK. The nephelauxetic series. Prog Inorg Chem. 1962;4:73.

    Article  Google Scholar 

  30. Sanderson RT. Inorganic chemistry, chapter 6. New York: Reinhold; 1967.

    Google Scholar 

  31. Stoklosa HJ. J Chem Educ. 1973;50:50.

    Article  Google Scholar 

  32. Montgomery H, Lingafelter EC. The crystal structure of Tutton’s salts. IV. Cadmium ammonium sulfate hexahydrate. Acta Cryst. 1966;20:728.

    Article  CAS  Google Scholar 

  33. Carrano CJ, Nunn CM, Quan R, Bonadies JA, Pecoraro VL. Monomeric and dimericvanadium(IV) and -(V) complexes of N-(hydroxyalkyl)salicylideneamines: structures, magnetochemistry and reactivity. Inorg Chem. 1990;29:944.

    Article  CAS  Google Scholar 

  34. Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143.

    Article  CAS  Google Scholar 

  35. Hathaway BJ. A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. Struct Bond (Berlin). 1984;57:55.

    Article  CAS  Google Scholar 

  36. Dunn TM. Spin-orbit coupling in the first and second transition sews. Trans Faraday Soc. 1961;57:1441.

    Article  CAS  Google Scholar 

  37. Mc Garvey BR. The isotropic hyperfine interaction. J Phys Chem. 1967;71:51.

    Article  CAS  Google Scholar 

  38. Salagram M, Satyanarayana N, Radhakrishna S. Semi-empirical evaluation of molecular-orbital parameters, and spin—orbit, dipolar and fermi-contact terms of VO2+ ion in lattices. Polyhedron. 1986;5:1171.

    Article  CAS  Google Scholar 

  39. AbragamA BleaneyB. Electron paramagnetic resonance of transition ions. Oxford: Oxford University Press; 1970.

    Google Scholar 

  40. Mabbs FE, Collison D. Electron paramagnetic resonance of transition metal compounds. Amsterdam: Elsevier; 1992.

    Google Scholar 

  41. Owen J. The colours and magnetic properties of hydrated iron group salts, and evidence for covalent bonding. Proc R Soc Lon A. 1955;227:183.

    Article  CAS  Google Scholar 

  42. Cullity BD. Elements of X-ray diffraction. 2nd ed. Boston: Addison-Wesley Inc; 1993.

    Google Scholar 

  43. Fahem AA. Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation. Spectrochim Acta A. 2012;88:10.

    Article  CAS  Google Scholar 

  44. Shahrjerdi A, Davarani SSH, Najafi E, Amini MM. Sonoelectrochemical synthesis of a new nano lead(II) complex with quinoline-2-carboxylic acid ligand: a precursor to produce pure phase nano-sized lead(II) oxide. Ultrason Sonochem. 2015;22:382.

    Article  CAS  Google Scholar 

  45. Fleming I. Frontier orbitals and organic chemical reactions. London: Wiley; 1976.

    Google Scholar 

  46. Ray RK, Kauffman GR. EPR spectra and covalency of bis(amidinourea/O-alkyl-1-amidinourea)copper(II) complexes part II. Properties of the CuN4 2− chromophore. Inorg Chem Acta. 1990;173:207.

    Article  CAS  Google Scholar 

  47. Chikate RC, Padhy SB. Transition metal quinone–thiosemicarbazone complexes 2: Magnetism, ESR and redox behavior of iron (II), iron (III), cobalt (II) and copper (II) complexes of 2-thiosemicarbazido-1,4-naphthoquinone. Polyhedron. 2005;24:1689.

    Article  CAS  Google Scholar 

  48. Sagdinc S, Köksoy B, Kandemirli F, Bayari SH. Theoretical and spectroscopic studies of 5-fluoro-isatin-3-(N-benzylthiosemicarbazone) and its zinc(II) complex. J Mol Struct. 2009;917:63.

    Article  CAS  Google Scholar 

  49. Tripathi SK, Muttineni R, Singh SK. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. J Theor Biol. 2013;334:87.

    Article  CAS  Google Scholar 

  50. Al-Iede MM, Karpelowsky J, Fitzgerald DA. Recurrent diaphragmatic hernia: modifiable and non-modifiable risk factors. Pediatr Pulmonol; 2015.

  51. AtaiwSH Abou-HussenAA. Mono and Di-nuclear complexes of Cu(II) and Cu(I) with tetradentateschiff bases. Their biological activity and potential application. Egypt J Chem. 2003;46:685.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashwa M. El-Metwaly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, F.A., Elghalban, M.G., Al-Fahemi, J.H. et al. Simulative aurintricarboxylic acid molecular docking with antitumor activity for its VO(II), Cr(III), Mn(II) and Fe(III) complexes, HF/DFT modeling and elaborated EPR studies. J Therm Anal Calorim 128, 1565–1578 (2017). https://doi.org/10.1007/s10973-016-6054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6054-x

Keywords

Navigation