Skip to main content
Log in

Fibers and fiber cocktails to improve fire resistance of concrete

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Our study was directed to improve the residual flexural strength and the heat-resistant properties of concrete exposed to high temperatures using different fiber cocktail loadings including steel, polymer or cellulose fibers. At first the morphology and the thermal properties of the fibers and the fiber/cement composites were investigated by SEM and TG/DTA-MS. Then the influence of fiber type and amount on residual flexural strength was tested after cooling back from 150, 500 or 800 °C temperature loadings. By adding steel, cellulose and polymer (polypropylene) fibers to cement, improvements both in post-cracking residual flexural strength and in insensitivity against explosive spalling were reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allison R. Inquiry into the fire on heavy goods vehicle shuttle 7539 on 18 November 1996. London: HMSO; 1997.

    Google Scholar 

  2. Fellinger J, Breunese A. Fire safe design: make it concrete!. In: Gambarova PG, Felicetti R, Meda A, Riva P, editors. Fire design of concrete structures: What now? What next? Proceedings of workshop. Brescia: Starrylink Editrice Brescia; 2015. p. 313–316.

  3. Lublóy É, Czoboly O, Hlavička V, Oros ZS, Balázs GL. Experiences of the fire case of athletic hall of the University of Physical Education in Budapest 15 Oct. 2015. Vasbetonépítés. 2015;3:50–5.

    Google Scholar 

  4. Lublóy É, Kopecskó K, Balázs GL, et al. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5392-z.

    Google Scholar 

  5. Balázs GL, Lublóy É. Fire resistance for thin-webbed concrete and masonry elements. In: Applications of Structural Fire Engineering: Proceedings of the International Conference in Dubrovnik. 2015. p. 1–6.

  6. Thielen KC. Strength and deformation of concrete subjected to high temperature and biaxial stress-test and modelling. Book 437. Berlin: Deutscher Ausschuss für Stahlbeton; 1994.

    Google Scholar 

  7. Noumowe A. Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200 °C. Cem Concr Res. 2005;35:2192–8.

    Article  CAS  Google Scholar 

  8. Chan SYN, Luo X, Sun W. Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Constr Build Mater. 2000;14:261–6.

    Article  Google Scholar 

  9. Chan YN, Luo X, Sun W. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 °C. Cem Concr Res. 2000;30:247–51.

    Article  CAS  Google Scholar 

  10. Peng GF, Yang WW, Zhao J, Liu YF, Bian SH, Zhao LH. Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures. Cem Concr Res. 2006;36:723–7.

    Article  CAS  Google Scholar 

  11. Aßbrock O, Carlswärd J, Dietze R, Guirguis P, Hemrich W, Lambrechts A, Löfgren I, Schulz M, Troy J, Gibbs J, Harrison T, Ressler C. Guidance to fibre concrete. Properties specification and practice in Europe. European Ready Mixed Concrete Organization: Bruxelles; 2012. p. 1–39.

    Google Scholar 

  12. Rossino C, Monte FL, Cangiano S, Felicetti R, Gambarova PG. Concrete spalling sensitivity versus microstructure: preliminary results on the effect of polypropylene fibers. MATEC Web Conf. 2013;6:1–9.

    Article  Google Scholar 

  13. Rossino C, Monte FL, Cangiano S, Felicetti R, Gambarova PG. HPC subjected to high temperature: a study on intrinsic and mechanical damage. Key Eng Mater. 2014;629–630:239–44.

    Article  Google Scholar 

  14. Lublóy É. Effect of fire to the concrete structures. Ph.D. dissertation. Budapest. 2008.

  15. Fib bulletin 46. Fire design of concrete structures—structural behaviour and assessment. State-of-art report. TG 4.3. Ostfildern: DCC Document Competence Center Siegmar Kästl e.K; 2008.

    Google Scholar 

  16. Luda MP, Dall’Anese R. On the microstructure of polypropylenes by pyrolysis GC-MS. Polym Degrad Stab. 2014;110:35–43.

    Article  CAS  Google Scholar 

  17. Endo K, Kobayashi N, Aida M, Hoshi T. Spectral analysis of polystyrene. Polypropylene, and Poly(methyl methacrylate) Polymers in TOF SIMS and XPS by MO calculations using the model oligomers. Polym J. 1996;28:901–10.

    Article  CAS  Google Scholar 

  18. Evans RJ, Milne TA, Soltys MN. Mass spectrometric behaviour of levoglucosan under different ionization conditions and implications for studies of cellulose pyrolysis. J Anal Appl Pyrol. 1984;6:273–83.

    Article  CAS  Google Scholar 

  19. Evans RJ, Milne TA. Molecular characterization of the pyrolysis of biomass fundamentals. Energy Fuels. 1987;1(2):123.

    Article  CAS  Google Scholar 

  20. Trník A, Sheinherrová L, Medved I, Černý R. Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material. J Therm Anal Calorim. 2015;121:67–73.

    Article  Google Scholar 

  21. Narattha C, Thongsanitgarn P, Chaipanich A. Thermogravimetry analysis, compressive strength and thermal conductivity tests of non-autoclaved aerated Portland cement-fly ash-silica fume concrete. J Therm Anal Calorim. 2015;122:11–20.

    Article  CAS  Google Scholar 

  22. Sun L, Wu Q, Xie Y, Song K, Lee S, Wang Q. Thermal decomposition of fire-retarded wood flour/polypropylene composites. J Therm Anal Calorim. 2016;123:309–18.

    Article  CAS  Google Scholar 

  23. Kannan M, Bhagawan SS, Thomas S, Joseph K. Thermogravimetric analysis and differential scanning calorimetric studies on nanoclay-filled TPU/PP blends. J Therm Anal Calorim. 2013;112:1231–44.

    Article  CAS  Google Scholar 

  24. Shen D, Ye J, Xiao R, Zhang H. TG-MS analysis for thermal decomposition of cellulose under different atmospheres. Carbohydr Polym. 2013;98:514–21.

    Article  CAS  Google Scholar 

  25. Saad M, Abo-El-Enein SA, Hanna GB, Kotkata MF. Effect of silica fume on the phase composition and microstructure of thermally treated concrete. Cem Concr Res. 1996;26:1479–84.

    Article  CAS  Google Scholar 

  26. Alqassim MA, Jones MR, Berlouis LEA, Nic Daeid N. A thermoanalytical, X-ray diffraction and petrographic approach to the forensic assessment of fire affected concrete in the United Arab Emirates. Forens Sci Int. 2016;264:82–8.

    Article  CAS  Google Scholar 

  27. Xiong MX, Liew JYR. Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes. Mater Des. 2016;104:414–27. doi:10.1016/j.matdes.2016.05.050.

    Article  CAS  Google Scholar 

  28. Balázs GL, Lublóy É, Czoboly O. Possible observations on concrete after high temperature loading. J Fac Civil Eng. 2014;1:579–86 [ISSN: 0352–6852].

    Google Scholar 

  29. Balázs GL, Lublóy É, Czoboly O. Effectiveness of fibres for structural elements in case of fire. FRC 2014: ACI-fib International Workshop “Fibre-reinforced concrete: from design to structural applications”. ISBN 978-2-88394-119-9. ISSN 1562–3610. 2016;269–278.

  30. Short NR, Purkiss JA, Guise SE. Assessment of fire damaged concrete using colour image analysis. Constr Build Mater. 2001;15:9–15.

    Article  Google Scholar 

  31. Georgali B, Tsakiridis PE. Microstructure of fire-damaged concrete. A case study. Cem Concr Compos. 2005;27:255–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Hlavička.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czoboly, O., Lublóy, É., Hlavička, V. et al. Fibers and fiber cocktails to improve fire resistance of concrete. J Therm Anal Calorim 128, 1453–1461 (2017). https://doi.org/10.1007/s10973-016-6038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6038-x

Keywords

Navigation