Skip to main content
Log in

Influence of the Ni/Al ratio on Ni–Al mixed oxides and their catalytic properties for ethanol decomposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The relationship between the properties with the composition of nickel–aluminium mixed oxides was investigated in this work. Ni–Al materials with Ni/Al molar ratios between 0.5 and 9 were synthesised via co-precipitation. The samples were characterised using the following techniques: surface area measurements (S BET), thermogravimetry, X-ray diffraction and temperature-programmed reduction, desorption and oxidation (H2-TPR, NH3-TPD and TPO/DTA). Samples with Ni/Al ratio = 0.5 primarily formed the Al2O3 phase, whereas Ni/Al ratio = 9 mainly led to the bulk NiO phase. However, Ni/Al ratios between 1 and 3 favoured the formation of the mixed oxide phase with increased thermal stability and specific surface area and decreased crystallite sizes. The lower Ni/Al ratios led to the production of ethylene, which is likely related to the higher number of sites with stronger acidity. The samples with Ni/Al ratios of 2 and 3 promoted selectivity towards synthesis gas. For higher Ni/Al ratios, low thermal stability leading to sintering and deactivation due to coke formation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma R, Castro-Dominguez B, Mardilovich I, Dixon AG, Ma YH. Experimental and simulation studies of the production of renewable hydrogen through ethanol steam reforming in a large-scale catalytic membrane reactor. Chem Eng J. 2016;303:302–13.

    Article  CAS  Google Scholar 

  2. Divins NJ, Llorca J. In situ photoelectron spectroscopy study of ethanol steam reforming over RhPd nanoparticles and RhPd/CeO2. Appl Catal A Gen. 2016;518:60–6.

    Article  CAS  Google Scholar 

  3. Gallego J, Sierra G, Mondragon F, Barrault J, Batiot-Dupeyrat C. Synthesis of MWCNTs and hydrogen from ethanol catalytic decomposition over a Ni/La2O3 catalyst produced by the reduction of LaNiO3. Appl Catal A Gen. 2011;397:73–81.

    Article  CAS  Google Scholar 

  4. Fajardo H, Longo E, Mezalira D, Nuernberg G, Almerindo G, Collasiol A, Probst LD, Garcia IS, Carreño NV. Influence of support on catalytic behavior of nickel catalysts in the steam reforming of ethanol for hydrogen production. Environ Chem Lett. 2010;8(1):79–85.

    Article  CAS  Google Scholar 

  5. Wang G, Wang H, Li W, Ren Z, Bai J, Bai J. Efficient production of hydrogen and multi-walled carbon nanotubes from ethanol over Fe/Al2O3 catalysts. Fuel Process Technol. 2011;92(3):531–40.

    Article  CAS  Google Scholar 

  6. Mezalira DZ, Probst LD, Pronier S, Batonneau Y, Batiot-Dupeyrat C. Decomposition of ethanol over Ni/Al2O3 catalysts to produce hydrogen and carbon nanostructured materials. J Mol Catal A Chem. 2011;340(1–2):15–23.

    Article  CAS  Google Scholar 

  7. Liu Q, Ouyang Y, Zhang L, Xu Y, Fang Y. Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol. Phys E. 2009;41(7):1204–9.

    Article  CAS  Google Scholar 

  8. Tian R, Wang X, Li M, Hu H, Chen R, Liu F, Zheng H, Wan L. An efficient route to functionalize singe-walled carbon nanotubes using alcohols. Appl Surf Sci. 2008;255(5,2):3294–9.

    Article  CAS  Google Scholar 

  9. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal. 2008;259(1):147–60.

    Article  CAS  Google Scholar 

  10. Rostrup-Nielsen JR, Hansen JHB. CO2-reforming of methane over transition metals. J Catal. 1993;144(1):38–49.

    Article  CAS  Google Scholar 

  11. Rostrup-Nielsen JR. Production of synthesis gas. Catal Today. 1993;18(4):305–24.

    Article  Google Scholar 

  12. Wang G, Wang H, Tang Z, Li W, Bai J. Simultaneous production of hydrogen and multi-walled carbon nanotubes by ethanol decomposition over Ni/Al2O3 catalysts. Appl Catal B Environ. 2009;88(1–2):142–51.

    CAS  Google Scholar 

  13. Barthos R, Széchenyi A, Koós Á, Solymosi F. The decomposition of ethanol over Mo2C/carbon catalysts. Appl Catal A Gen. 2007;327(1):95–105.

    Article  CAS  Google Scholar 

  14. Gao F, Zhang L, Yang Y, Huang S. Quality of horizontally aligned single-walled carbon nanotubes: is methane as carbon source better than ethanol? Appl Surf Sci. 2010;256(11):3357–60.

    Article  CAS  Google Scholar 

  15. Li W, Wang H, Ren Z, Wang G, Bai J. Co-production of hydrogen and multi-wall carbon nanotubes from ethanol decomposition over Fe/Al2O3 catalysts. Appl Catal B Environ. 2008;84(3–4):433–9.

    Article  CAS  Google Scholar 

  16. Igarashi H, Murakami H, Murakami Y, Maruyama S, Nakashima N. Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol. Cehm Phys Lett. 2004;392(4–6):529–32.

    Article  CAS  Google Scholar 

  17. Wang G, Wang H, Li W, Bai J. Preparation of hydrogen and carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of ethanol. RSC Adv. 2011;1(8):1585–92.

    Article  CAS  Google Scholar 

  18. Holgado MJ, Rives V, San Roman MS. Characterization of Ni–Mg–Al mixed oxides and their catalytic activity in oxidative dehydrogenation of n-butane and propene. Appl Catal A Gen. 2001;214(2):219–28.

    Article  CAS  Google Scholar 

  19. Vaccari A. Preparation and catalytic properties of cationic and anionic clays. Catal Today. 1998;41(1–3):53–71.

    Article  CAS  Google Scholar 

  20. Trifiró F, Vaccari A. Hydrotalcite-like anionic clays (layer double hydroxides). Comprehensive supramolecular chemistry, vol. 7. Oxford: Pergamon; 1996. p. 251.

    Google Scholar 

  21. Hermes NA, Lansarin MA, Perez-Lopez OW. Catalytic decomposition of methane over M–Co–Al catalysts (M = Mg, Ni, Zn, Cu). Catal Lett. 2011;141(7):1018–25.

    Article  CAS  Google Scholar 

  22. Bhattacharyya A, Chang VW, Schumacher DJ. CO2 reforming of methane to syngas: I: evaluation of hydrotalcite clay-derived catalysts. Appl Clay Sci. 1998;13(5–6):317–28.

    Article  CAS  Google Scholar 

  23. Mas V, Dieuzeide ML, Jobbagy M, Baronetti G, Amadeo N, Laborde M. Ni(II)–Al(III) layered double hydroxide as catalyst precursor for ethanol steam reforming: activation treatments and kinetic studies. Catal Today. 2008;133:319–23.

    Article  Google Scholar 

  24. Muroyama H, Nakase R, Matsui T, Eguchi K. Ethanol steam reforming over Ni-based spinel oxide. Int J Hydrogen Energy. 2010;35(4):1575–81.

    Article  CAS  Google Scholar 

  25. Resini C, Montanari T, Barattini L, Ramis G, Busca G, Presto S, Riani P, Marazza R, Sisani M, Marmottini F, et al. Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors: catalyst characterization, catalytic activity and reaction path. Appl Catal A Gen. 2009;355(1–2):83–93.

    Article  CAS  Google Scholar 

  26. Busca G, Costantino U, Montanari T, Ramis G, Resini C, Sisani M. Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni–Co–Zn–Al catalysts from hydrotalcite-like precursors. Int J Hydrogen Energy. 2010;35(11):5356–66.

    Article  CAS  Google Scholar 

  27. Liu Z, Xu W, Yao S, Johnson-Peck AC, Zhao F, Michorczyk P, Kubacka A, Stach EA, Fernández-García M, Senanayake SD, Rodriguez JA. Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: synergistic effects of W- and Ni-dopants. J Catal. 2015;321:90–9.

    Article  CAS  Google Scholar 

  28. Rached JA, El Hayek C, Dahdah E, Gennequin C, Aouad S, Tidahy HL, Estephane J, Nsouli B, Aboukaïs A, Abi-Aad E. Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production. Int J Hydrogen Energy. 2016. doi:10.1016/j.ijhydene.2016.10.053.

  29. Nwafal M, Gennequin C, Labaki M, Nsouli B, Aboukaïs A, Abi-Aad E. Hydrogen production by methane steam reforming over Ru supported on Ni–Mg–Al mixed oxides prepared via hydrotalcite route. Int J Hydrogen Energy. 2015;40(2):1269–77.

    Article  Google Scholar 

  30. Jiao Y, Du Y, Zhang J, Li C, Xue Y, Lu J, Wang J, Chen Y. Steam reforming of n-decane for H2 production over Ni modified La-Al2O3 catalysts: effects of the active component Ni content. J Anal Appl Pyrol. 2015;116:58–67.

    Article  CAS  Google Scholar 

  31. Gutiérrez-Ortiz JI, de Rivas B, López-Fonseca R, González-Velasco JR. Characterization of the catalytic properties of ceria-zirconia mixed oxides by temperature-programmed techniques. J Therm Anal Calorim. 2005;80(1):225–8.

    Article  Google Scholar 

  32. Smoláková L, Frolich K, Troppová I, Kutálek P, Kroft E, Čapek L. Determination of basic sites in Mg–Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry: when the same basic sites are reported from both techniques? J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5851-6.

    Google Scholar 

  33. Casenave S, Martinez H, Guimon C, Auroux A, Hulea V, Dumitriu E. Acid-Base properties of MgCuAl mixed oxides. J Therm Anal Calorim. 2003;72(1):191–8.

    Article  CAS  Google Scholar 

  34. Zygmuntowicz J, Wiecinska P, Miazga A, Konopka K. Characterization of composites containing NiAl2O4 spinel phase from Al2O3/NiO and Al2O3/Ni systems. J Therm Anal Calorim. 2016;125:1079–86.

    Article  CAS  Google Scholar 

  35. Kovanda F, Rojka T, Bezdicka P, Jiratova K, Obalova L, Pacultova K, Bastl Z, Grygar T. Effect of hydrothermal treatment on properties of Ni–Al layered double hydroxides and related mixed oxides. J Solid State Chem. 2009;182(1):27–36.

    Article  CAS  Google Scholar 

  36. Vaccari A. Clays and catalysis: a promising future. Appl Clay Sci. 1999;14(4):161–98.

    Article  CAS  Google Scholar 

  37. Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR. Structure and surface and catalytic properties of Mg–Al basic oxides. J Catal. 1998;178(2):499–510.

    Article  Google Scholar 

  38. Frost RL, Musumeci AW, Bostrom T, Adebajo MO, Weier ML, Martens W. Thermal decomposition of hydrotalcite with chromate, molybdate or sulphate in the interlayer. Thermochim Acta. 2005;429(2):179–87.

    Article  CAS  Google Scholar 

  39. Crepaldi EL, Pavan PC, Valim JB. Comparative study of the coprecipitation methods for the preparation of layered double hydroxides. J Braz Chem Soc. 2000;11:64–70.

    Article  CAS  Google Scholar 

  40. Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95(1):123–9.

    Article  CAS  Google Scholar 

  41. de Souza G, Ávila VC, Marcílio NR, Perez-Lopez OW. Synthesis gas production by steam reforming of ethanol over M–Ni–Al hydrotalcite-type catalysts; M = Mg, Zn, Mo, Co. Proc Eng. 2012;42:1805–15.

    Article  Google Scholar 

  42. Zhang LH, Xiang X, Zhang L, Li F, Zhu J, Evans DG, Duan X. Influence of iron substitution on formation and structure of Cu-based mixed oxides derived from layered double hydroxides. J Phys Chem Solids. 2008;69(5–6):1098–101.

    Article  CAS  Google Scholar 

  43. Montoya JA, Romero-Pascual E, Gimon C, Del Angel P, Monzon A. Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel. Catal Today. 2000;63(1):71–85.

    Article  CAS  Google Scholar 

  44. Guo JJ, Lou H, Zhao H, Chai DF, Zheng XM. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A Gen. 2004;273(1–2):75–82.

    Article  CAS  Google Scholar 

  45. Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today. 1991;11(2):173–301.

    Article  CAS  Google Scholar 

  46. Perez-Lopez OW, Senger A, Marcilio NR, Lansarin MA. Effect of composition and thermal pretreatment on properties of Ni–Mg–Al catalysts for CO2 reforming of methane. Appl Catal A Gen. 2006;303(2):234–44.

    Article  CAS  Google Scholar 

  47. Aasberg-Petersen K, Dybkjær I, Ovesen CV, Schjødt NC, Sehested J, Thomsen SG. Natural gas to synthesis gas—catalysts and catalytic processes. J Nat Gas Sci Eng. 2011;3(2):423–59.

    Article  CAS  Google Scholar 

  48. Ewbank JL, Kovarik L, Kenvin CC, Sievers C. Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane. Green Chem. 2014;16(2):885–96.

    Article  CAS  Google Scholar 

  49. de Sousa FF, de Sousa HSA, Oliveira AC, Junior MCC, Ayala AP, Barros EB, Viana BC, Filho JM, Oliveira AC. Nanostructured Ni-containing spinel oxides for the dry reforming of methane: effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts. Int J Hydrogen Energy. 2012;37(4):3201–12.

    Article  Google Scholar 

  50. Escobar C, Perez-Lopez O. Hydrogen production by methane decomposition over Cu–Co–Al mixed oxides activated under reaction conditions. Catal Lett. 2014;144:796–804.

    Article  CAS  Google Scholar 

  51. Xu Z, Li Y, Zhang J, Chang L, Zhou R, Duan Z. Bound-state Ni species—a superior form in Ni-based catalyst for CH4/CO2 reforming. Appl Catal A Gen. 2001;210(1–2):45–53.

    Article  CAS  Google Scholar 

  52. Li G, Hu L, Hill JM. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation. Appl Catal A Gen. 2006;301(1):16–24.

    Article  CAS  Google Scholar 

  53. Boukha Z, Jiménez-González C, de Rivas B, González-Velasco JR, Gutiérrez-Ortiz JI, López-Fonseca R. Synthesis, characterisation and performance evaluation of spinel-derived Ni/Al2O3 catalysts for various methane reforming reactions. Appl Catal B Environ. 2014;158–159:190–201.

    Article  Google Scholar 

  54. Han YS, Li JB, Ning XS, Chi B. Effect of preparation temperature on the lattice parameter of nickel aluminate spinel. J Am Chem Soc. 2004;87(7):1347–9.

    CAS  Google Scholar 

  55. Clause O, Rebours B, Merlen E, Trifiró F, Vaccari A. Preparation and characterization of nickel–aluminum mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors. J Catal. 1992;133(1):231–46.

    Article  CAS  Google Scholar 

  56. Cesteros Y, Salagre P, Medina F, Sueiras JE. Preparation and characterization of several high-area NiAl2O4 spinels. Study of their reducibility. Chem Mater. 2000;12(2):331–5.

    Article  CAS  Google Scholar 

  57. Dancini-Pontes I, Fernandes-Machado NRC, Souza M, Pontes RM. Insights into ethanol decomposition over Pt: a DFT energy decomposition analysis for the reaction mechanism leading to C2H6 and CH4. Appl Catal A Gen. 2015;491:86–93.

    Article  CAS  Google Scholar 

  58. Xing S-K, Wang G-C. Reaction mechanism of ethanol decomposition on Mo2C(1 0 0) investigated by the first principles study. J Mol Catal A Chem. 2013;377:180–9.

    Article  CAS  Google Scholar 

  59. Choi IM, Liu P. Understanding of ethanol decomposition on Rh(1 1 1) from density functional theory and kinetic Monte Carlo simulations. Catal Today. 2011;165(1):64–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the financial support and scholarships granted by the “Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq” and by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar William Perez-Lopez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, G., Marcilio, N.R. & Perez-Lopez, O.W. Influence of the Ni/Al ratio on Ni–Al mixed oxides and their catalytic properties for ethanol decomposition. J Therm Anal Calorim 128, 735–744 (2017). https://doi.org/10.1007/s10973-016-6034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6034-1

Keywords

Navigation