Skip to main content
Log in

Influence of thermal stability on dielectric properties of SiO2–K2O–CaO–MgO glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Compositions of 55SiO2–10K2O–(35–x)CaO–xMgO are prepared by melt and quench technique. Thermal parameters of the as-prepared glasses are studied using the differential thermal analyzer under non-isothermal conditions. Kissinger, Augis–Bennett and Lasocka models are employed to investigate the kinetics of crystallization and thermal stability of these glasses. Based on this, it is concluded that CM-15 glass exhibits highest thermal stability. Raman spectroscopy is used to reveal the structural units of the glasses. Dielectric properties are observed through impedance spectroscopy. All the glasses are phase separated. The ratio of CaO/MgO influences the thermal stability, which leads to affect the dielectric properties. The highest dielectric permittivity is observed ~22 at room temperature and 100 Hz for CM-15 glass, where CaO/MgO ratio is ~1.33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zarzycki J, editor. Glasses and amorphous materials (Materials science and technology: a comprehensive treatment), vol. 9. Hoboken: Wiley; 1991.

    Google Scholar 

  2. Hlavac J. The technology of glass and ceramics. Amsterdam: Elsevier Science Ltd; 1983.

    Google Scholar 

  3. Shelby JE. Introduction to glass science and technology. 2nd ed. Cambridge: Royal Society of Chemistry; 2005.

    Google Scholar 

  4. Partyka J, Gasek K, Pasiut K, Gajek M. Effect of addition of BaO on sintering of glass-ceramic materials from SiO2–Al2O3–Na2O–K2O–CaO/MgO system. J Therm Anal Calorim. 2016;125:1095–103.

    Article  CAS  Google Scholar 

  5. Öchsner A, da Silva LFM, Altenbach H, editors. Characterization and development of biosystems and biomaterials. 1st ed. Berlin: Springer; 2013.

    Google Scholar 

  6. Kaur G, Kumar V, Pandey OP, Singh K. Thermodynamic stability of yttrium alkaline earth borosilicate glasses and their compatibility with Crofer for SOFC. J Electrochem Soc. 2012;159(3):B277–84.

    Article  CAS  Google Scholar 

  7. Sesták J, Simon P, editors. Thermal analysis of micro, nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. 1st ed. Netherlands: Springer; 2013.

    Google Scholar 

  8. Pollock DD. Physical properties of materials for engineers. 2nd ed. Boca Raton: CRC Press; 1993.

    Google Scholar 

  9. Wersing W. Microwave ceramics for resonators and filters. Curr Opin Solid State Mater Sci. 1996;1:715–31.

    Article  CAS  Google Scholar 

  10. Arya SK, Kaur B, Kaur G, Singh K. Optical and thermal properties of (70 − x)SiO2xNa2O–15CaO–10Al2O3–5TiO2 (10 ≤ x ≤ 25) glasses. J Therm Anal Calorim. 2015;120:1163–71.

    Article  CAS  Google Scholar 

  11. Wang F, Liao Q, Xiang G, Pan S. Thermal properties and FTIR spectra of K2O/Na2O iron borophosphate glasses. J Mol Struct. 2014;1060:176–81.

    Article  CAS  Google Scholar 

  12. Shah KV, Goswami M, Aswal DK, Shrikhande VK, Gupta SK, Kothiyal GP. Effect of Na2O/K2O substitution on thermophysical properties of PbO based phosphate glasses. J Therm Anal. 2007;89:153–7.

    Article  CAS  Google Scholar 

  13. Money BK, Hariharan K. Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li2O-P2O5) glass system. J Phys Cond Matter. 2009;21:115102.

    Article  Google Scholar 

  14. Qiao JC, Pelletier JM. Isochronal and isothermal crystallization in Zr55Cu30Ni5Al10 bulk metallic glass. Trans Nonferrous Met Soc China. 2012;22:577–84.

    Article  Google Scholar 

  15. Jha P, Singh K. Effect of MgO on bioactivity, hardness, structural and optical properties of SiO2–K2O–CaO–MgO glasses. Ceram Int. 2015;42:436–44.

    Article  Google Scholar 

  16. Arya SK, Singh K. Thermal and kinetic parameters of 30Li2O–55B2O3–5ZnO–xTiO2–(10 − x)V2O5 (0 ≤ x ≤ 10) glasses. J Therm Anal Calorim. 2015;122:189–95.

    Article  CAS  Google Scholar 

  17. Jha PK, Pandey OP, Singh K. Structural and thermal properties of Na2S–P2S5 glass and glass ceramics. J Non Cryst Solids. 2013;379:89–94.

    Article  CAS  Google Scholar 

  18. Arora A, Goel A, Shaaban ER, Singh K, Pandey OP, Ferreira JMF. Crystallization kinetics of BaO–ZnO–Al2O3–B2O3–SiO2 glass. Phys B Cond Matter. 2008;403:1738–46.

    Article  CAS  Google Scholar 

  19. Cormier L. Nucleation in glasses—new experimental findings and recent theories. Procedia Mater. Sci. 2014;7:60–71.

    Article  CAS  Google Scholar 

  20. Sun Y, Zhang F, Ye Z, Zhang Y, Fang X, Ding Z, et al. “Crystal genes” in metallic liquids and glasses. Sci Rep. 2016;6:23734.

    Article  CAS  Google Scholar 

  21. Chandler D, Garrahan JP. Dynamics on the way to forming glass: bubbles in space–time. Annu Rev Phys Chem. 2010;61:191–217.

    Article  CAS  Google Scholar 

  22. Ma J, Chen CZ, Wang DG, Shao X, Wang CZ, Zhang HM. Effect of MgO addition on the crystallization and in vitro bioactivity of glass ceramics in the CaO–MgO–SiO2–P2O5 system. Ceram Int. 2012;38:6677–84.

    Article  CAS  Google Scholar 

  23. Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    Article  CAS  Google Scholar 

  24. Joshi SR, Pratap A, Saxena NS, Saksena MP, Kumar A. Heating rate and composition dependence of the glass transition temperature of a ternary chalcogenide glass. J Mater Sci Lett. 1994;13:77–9.

    Article  CAS  Google Scholar 

  25. Avramov I, Vassilev T, Penkov I. The glass transition temperature of silicate and borate glasses. J Non Cryst Solids. 2005;351:472–6.

    Article  CAS  Google Scholar 

  26. Abbas L, Bih L, Nadiri A, El Amraoui Y, Khemakhem H, Mezzane D. Chemical durability of MoO3–P2O5 and K2O–MoO3–P2O5 glasses. J Therm Anal Calorim. 2007;90:453–8.

    Article  CAS  Google Scholar 

  27. Kjeldsen J, Smedskjaer MM, Mauro JC, Youngman RE, Huang L, Yue Y. Mixed alkaline earth effect in sodium aluminosilicate glasses. J Non Cryst Solids. 2013;369:61–8.

    Article  CAS  Google Scholar 

  28. Reynoso VC, Yukimitu K, Nagami T, Carvalho C, Moraes JC, Araújo E. Crystallization kinetics in phosphate sodium-based glass studied by DSC technique. J Phys Chem Solids. 2003;64:27–30.

    Article  CAS  Google Scholar 

  29. Al-Noaman A, Rawlinson SCF, Hill RG. The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. J Non Cryst Solids. 2012;358:3019–27.

    Article  CAS  Google Scholar 

  30. Thieme K, Avramov I, Rüssel C. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses. Sci Rep. 2016;6:25451.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  32. Lasocka M. Application of Piloyan’s method in the study of the energetics of a glass-to-crystal transition. J Therm Anal. 1979;16:197–200.

    Article  CAS  Google Scholar 

  33. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  34. Zotov N, Ebbsjo E, Timpel D, Keppler H. Calculation of Raman spectra and vibrational properties of silicate glasses: comparison between Na2Si4O9 and SiO2 glasses. Phys Rev B. 1999;60:6383.

    Article  CAS  Google Scholar 

  35. Zakaznova-Herzog VP, Malfait WJ, Herzog F, Halter WE. Quantitative Raman spectroscopy: principles and application to potassium silicate glasses. J Non Cryst Solids. 2007;353:4015–28.

    Article  CAS  Google Scholar 

  36. Wang M, Cheng J, Li M, He F. Raman spectra of soda–lime–silicate glass doped with rare earth. Phys B. 2011;406:3865.

    Article  CAS  Google Scholar 

  37. Kalampounias AG. IR and Raman spectroscopic studies of sol–gel derived alkaline-earth silicate glasses. Bull Mater Sci. 2011;34(2):299–303.

    Article  CAS  Google Scholar 

  38. Mysen BO, Finger LW, Virgo D, Seifert FA. Curve-fitting of Raman spectra of silicate glasses. Am Miner. 1982;67:686–95.

    CAS  Google Scholar 

  39. Mcmillan P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am Miner. 1984;69:622–44.

    CAS  Google Scholar 

  40. Park JH. Structure–property correlations of CaO–SiO2–MnO slag derived from Raman spectroscopy. ISIJ Int. 2012;52:1627–36.

    Article  CAS  Google Scholar 

  41. Kalampounias AG, Nasikas NK, Papatheodorou GN. Glass formation and structure in the MgSiO3–Mg2SiO4 pseudobinary system: from degraded networks to ioniclike glasses. J Chem Phys. 2010;131:114513.

    Article  Google Scholar 

  42. Zhang X, Du Z, Wu H, Yue Y. Effect of TiO2 on structure and dielectric properties of RO-Al2O3–B2O3–SiO2 (R = Ca, Mg) glasses. Surf Rev Lett. 2013;20:1350030.

    Article  Google Scholar 

  43. Jonscher AK. The “universal” dielectric response. Nature. 1977;267:673–9.

    Article  CAS  Google Scholar 

  44. Jonscher AK. Dielectric relaxation in solids. J Phys D Appl Phys. 1999;32:R57–70.

    Article  CAS  Google Scholar 

  45. Arya SK, Danewalia SS, Singh K. Frequency independent low-k lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications. J Mater Chem C. 2016;4:3328–36.

    Article  CAS  Google Scholar 

  46. Danewalia SS, Sharma G, Thakur S, Singh K. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics. Sci Rep. 2016;6:24617.

    Article  CAS  Google Scholar 

  47. Kittel C. Introduction to solid state physics. Hoboken: Wiley; 2007.

    Google Scholar 

  48. Ishai PB, Talary MS, Caduff A, Levy E, Feldman Y. Electrode polarization in dielectric measurements: a review. Meas Sci Technol. 2013;24(10):102001.

    Article  Google Scholar 

  49. Richert R. The dielectric modulus: relaxation versus retardation. Solid State Ionics. 1998;105:167–73.

    Article  CAS  Google Scholar 

  50. Macedo PB, Moynihan CT, Bose R. Phys Chem Glasses. 1972;13:171.

    CAS  Google Scholar 

  51. Vaish R, Varma KBR. Dielectric properties of Li2O–3B2O3 glasses. J Appl Phys. 2009;106:064106.

    Article  Google Scholar 

  52. Wang Z, Hu Y, Lu H, Yu F. Dielectric properties and crystalline characteristics of borosilicate glasses. J Non Cryst Solids. 2008;354:1128–32.

    Article  CAS  Google Scholar 

  53. Sundar V, Yimnirun R, Aitken BG, Newnham RE. Structure–property relationships in the electrostriction response of low dielectric permittivity silicate glasses. Mater Res Bull. 1998;33:1307–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are very thankful to Dr. Gurbinder Kaur and Dr. Paramjyot Kumar Jha for their valuable discussions and suggestions during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P., Danewalia, S.S. & Singh, K. Influence of thermal stability on dielectric properties of SiO2–K2O–CaO–MgO glasses. J Therm Anal Calorim 128, 745–754 (2017). https://doi.org/10.1007/s10973-016-6013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6013-6

Keywords

Navigation