Skip to main content
Log in

Determination of degradation kinetics of polyvinyl alcohol/X-zeolite nanocomposite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol) (PVA) containing Ag-modified X-zeolite (PVA/X-zeolite) nanocomposite was successfully fabricated using solution casting technique. Morphology, structural and thermal properties of the pure PVA and its nanocomposite were characterized by FE-scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), X-ray diffraction, and differential scanning calorimetry (DSC), respectively. Results from DSC traces showed that the X-zeolite acts as efficient nucleating agent toward PVA crystallization. Photographs of FE-SEM demonstrate the nanosize and homogenous dispersion of the X-zeolite in PVA matrix. Moreover, EDX analysis confirmed the presence of constituent elements of the X-zeolite in the nanocomposite as well. Thermal degradation of PVA and PVA/X-zeolite nanocomposite was addressed in details by thermogravimetry analysis under non-isothermal conditions. Similar to pure PVA, the PVA/X-zeolite nanocomposite thermally degraded in two steps ranged from 400 to 690 K and 700 to 780 K, respectively. Values of the apparent activation energies were estimated using Friedman’s isoconversional method. A strong dependence of the E a on conversion (α) was observed. To confirm the anticipated reaction models, differential master plot analysis was applied to the experimental data. Results showed that the degradation of PVA and its nanocomposite could be described by the reaction-order (A type) kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen Q, Cabanas-Polo S, Goudouri OM, Boccaccini AR. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: mechanical properties and in vitro bioactivity assessment. Mater Sci Eng C Mater Biol Appl. 2014;40:55–64.

    Article  Google Scholar 

  2. Xia R, Heliotis G, Campoy-Quiles M, Stavrinou PN, Bradley DDC, Vak D, Kim D-Y. Characterization of a high-thermal-stability spiroanthracenefluorene- based blue-light-emitting polymer optical gain medium. J Appl Phys. 2005;98:083101–7.

    Article  Google Scholar 

  3. Ji XL, Hampsey JE, Hu QY, He JB, Yang ZZ, Lu YF. Mesoporous silica reinforced polymer nanocomposites. Chem Mater. 2003;15(19):3656–62.

    Article  CAS  Google Scholar 

  4. Jandas PJ, Mohanty S, Nayak SK. Morphology and thermal properties of renewable resource-based polymer blend nanocomposites influenced by a reactive compatibilizer. ACS Sustain Chem Eng. 2014;2:377–86.

    Article  CAS  Google Scholar 

  5. Yu D, Kleemeier M, Wu GM, Schartel B, Liu WQ, Hartwig A. The absence of size-dependency in flame retarded composites containing low-melting organic-inorganic glass and clay: comparison between micro- and nanocomposites. Polym Degrad Stab. 2011;96:1616–24.

    Article  CAS  Google Scholar 

  6. Morancho JM, Salla JM, Cadenato A, Fernández-Francos X, Ramis X, Colomer P, Calventus Y, Ruíz R. Kinetic studies of the degradation of poly(vinyl alcohol) based proton-conducting membranes at low temperatures. Thermochim Acta. 2011;521:139–47.

    Article  CAS  Google Scholar 

  7. Da Silva E, Lebrun L, Metayer M. Elaboration of a membrane with bipolar behavior using the semi-interpenetrating polymer networks technique. Polymer. 2002;43:5311–20.

    Article  Google Scholar 

  8. Chengpeng L, Tingting H, Xiaodong SH, Xiaoyi W, Fenghua SH, Weimin G, Lingxue K. Decomposition properties of PVA/graphene composites during melting-crystallization. Polym Degrad Stab. 2015;119:178–89.

    Article  Google Scholar 

  9. Kayal S, Ramanujan RV. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C Biomim Mater Sens Syst. 2010;30(3):484–90.

    Article  CAS  Google Scholar 

  10. Matsuyama H, Teramoto M, Urano H. Analysis of solute diffusion in poly(vinyl alcohol) hydrogel membrane. J Membr Sci. 1997;126:151–60.

    Article  CAS  Google Scholar 

  11. Omrani A, Rostami AA, Ravari F. Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim. 2013;111:677–83.

    Article  CAS  Google Scholar 

  12. Blanco I, Bottino FA, Cicala G, Latteri A, Recca A. A kinetic study of the thermal and thermal oxidative degradations of new bridged POSS/PS nanocomposites. Polym Degrad Stab. 2013;98:2564–70.

    Article  CAS  Google Scholar 

  13. Peng Z, Kong LX. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab. 2007;92:1061–71.

    Article  CAS  Google Scholar 

  14. Nunez L, Villanueva M, Fraga-Rivas I. Activation energies for the thermodegradation process of an epoxy-diamine system. J Therm Anal Calorim. 2006;83:727–33.

    Article  Google Scholar 

  15. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114:7868–76.

    Article  CAS  Google Scholar 

  16. Li SD, Li PW, Yang ZM, Dong JJ, Yang XH, Yang L. Thermal degradation of hydroxypropyltrimethyl ammonium chloride chitosan–Cd complexes. J Therm Anal Calorim. 2014;118:15–21.

    Article  CAS  Google Scholar 

  17. Flynn JH, Wall LA, Quick A. Direct method for the determination of activation energy from thermogravimetric data. J Polym Sci. 1966;4:323–42.

    Article  CAS  Google Scholar 

  18. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  19. Waleed EM, Al-Heniti SH. Evaluation and modeling of thermal kinetic degradation for PVA doped PbS quantum dot. Mater Res Bull. 2011;46:1366–71.

    Article  Google Scholar 

  20. Taghizadeh M, Sabouri N. Thermal degradation behavior of polyvinyl alcohol/starch/carboxymethyl cellulose/clay nanocomposites. Univers J Chem. 2013;1:21–9.

    CAS  Google Scholar 

  21. Manuela-Tatiana N, Cornelia V. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim. 2013;111:1903–19.

    Article  Google Scholar 

  22. Sovizi MR, Fakhrpour GH, Bagheri S, Rezanejade Bardajee GH. Non-isothermal dehydration kinetic study of a new swollen biopolymer silver nanocomposite hydrogel. J Therm Anal Calorim. 2015;121:1383–91.

    Article  CAS  Google Scholar 

  23. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Article  Google Scholar 

  24. Fakhrpour G, Bagheri S, Golriz M, Shekari M, Omrani A, Shameli A. Degradation kinetics of PET/PEN blend nanocomposites using differential isoconversional and differential master plot approaches. J Therm Anal Calorim. 2016;124:917–24.

    Article  CAS  Google Scholar 

  25. Azizi SN, Ghasemi Sh, Kavian S. Synthesis and characterization of NaX nanozeolite using stem sweep as silica source and application of Ag-modified nanozeolite in electrocatalytic reduction of H202. Biosens Bioelectron. 2014;62:1–7.

    Article  CAS  Google Scholar 

  26. Raoof JB, Ojani R, Hasheminejad E, Rashid-Nadimi S. Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix[6]arene matrix and its application for electrocatalytic reduction of H2O2. Appl Surf Sci. 2012;258:2788–95.

    Article  CAS  Google Scholar 

  27. Treacy MMJ. Collection of simulated XRD powder patterns for zeolites. New York: Elsevier; 2001.

    Google Scholar 

  28. Ngoc DT, Pham TH, Nguyen KHD. Synthesis, characterization and application of nanozeolite NaX from Vietnamese kaolin. Adv Nat Sci Nanosci Nanotechnol. 2013;4:045018–29.

    Article  Google Scholar 

  29. Eskandari A, Jahangiri M, Anbia M. Effect of particle size of NaX zeolite on adsorption of CO2/CH4. Int J Eng Trans A Basics. 2016;29:1–7.

    Google Scholar 

  30. Belkhair S, Kinninmonth M, Fisher L, Gasharova B, Liauw CHM, Verran J, Mihailova B, Tosheva L. Silver zeolite-loaded silicone elastomers: a multidisciplinary approach to synthesis and antimicrobial assessment. RSC Adv. 2015;5:40932–9.

    Article  CAS  Google Scholar 

  31. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN. Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys. 2009;9:165–71.

    Article  Google Scholar 

  32. Maruyama K, Takeuchi K, Tanizaki Y. Activation parameters for degradation of polyenes produced in heated poly(vinyl alcohol) film. Polymer. 1989;30:476–9.

    Article  CAS  Google Scholar 

  33. Anders H, Zimmermann H. A comparison of the thermal degradation behaviors of poly(vinyl acetate), poly(vinyl alcohol) and poly(vinyl chloride). Polym Degrad Stab. 1987;18:111–22.

    Article  CAS  Google Scholar 

  34. Thomas PS, Guerbois JP, Russell GF, Briscoe BJ. FTIR study of the thermal degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2001;64:501–8.

    Article  CAS  Google Scholar 

  35. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab. 2010;95:733–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Omrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushan, A.H., Omrani, A., Kavian, S. et al. Determination of degradation kinetics of polyvinyl alcohol/X-zeolite nanocomposite. J Therm Anal Calorim 128, 1057–1066 (2017). https://doi.org/10.1007/s10973-016-5998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5998-1

Keywords

Navigation