Skip to main content
Log in

Synthesis, spectroscopic, structure, thermal analyses, and biological activity evaluation of new norfloxacin vanadium (V) solvates (L) (L = An, DMF, Py, Et3N and o-Tol)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Novel five complexes of vanadium (V) with norfloxacin containing oxygen donor ligand in presence of different solvents containing nitrogen or oxygen donor ligand have been prepared as solid complexes [VO(Nor)2L]Cl3·nH2O, where L = aniline (An), dimethylformamide (DMF), pyridine (Py), o-tolidine (o-Tol), and triethylamine (Et3N). The isolated complexes have been characterized with physicochemical and spectroscopic techniques. In these complexes, norfloxacin acts as a bidentate ligand bound to the vanadium ion through the pyridone oxygen and one carboxylato oxygen. The stretching band of ν(C=O)pyridone at 1619 cm−1 of ligand shifts toward lower wavenumbers at 1519 cm−1 for DMF, at 1578 cm−1 for An, at 1574 cm−1 for Py, at 1574 cm−1 for o-Tol, and 1555 cm−1 for Et3N, which indicates the pyridone group bonding to the vanadium (V) ion. The lowest energy model structure of each complex has been proposed by using the density functional theory at the B3LYP/CEP-31G level of theory. The ligand and their metal complexes were also evaluated for their antibacterial activity against three Gram-positive—Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus pumilus—and three Gram-negative —Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae—microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vieira LMM, de Almeida MV, Lourenco MCS, Bezerra FAFM, Fontes APS. Synthesis and antitubercular activity of palladium and platinum complexes with fluoroquinolones. Eur J Med Chem. 2009;44:4107–11.

    Article  CAS  Google Scholar 

  2. Appelbaum PC, Hunter PA. The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents. 2000;16:5–15.

    Article  CAS  Google Scholar 

  3. Refat MS. Synthesis and characterization of norfloxacin-transition metal complexes (group 11, IB): spectroscopic, thermal, kinetic measurements and biological activity. Spectrochim Acta A. 2007;68:1393–405.

    Article  Google Scholar 

  4. Gao F, Yang P, Xie J, Wang H. Synthesis, characterization and antibacterial activity of novel Fe(III), Co(II), and Zn(II) complexes with norfloxacin. J Inorg Biochem. 1995;60:61–7.

    Article  CAS  Google Scholar 

  5. Turel I, Leban I, Bikovec N. Synthesis, characterization, and crystal structure of a copper(II) complex with quinolone family member (ciprofloxacin): bis(1)-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-piperazin-1ylquinoline-3-carboxylate) copper(II) chloride hexahydrate. J Inorg Biochem. 1994;56:273–82.

    Article  CAS  Google Scholar 

  6. Turel I, Golic L, Bukovee P. Antibacterial tests of bismuth(III)–quinolone (ciprofloxacin, cf) compounds against Helicobacter pylori and some other bacteria. Crystal structure of (cfH2)2[Bi2Cl10] 4H2O. J Inorg Biochem. 1998;71:53–60.

    Article  CAS  Google Scholar 

  7. Yang P, Li JB, Tian YN, Yu KB. Synthesis and crystal structure of rare earth complex with ciprofloxacin. Chin Chem Lett. 1999;10:879–80.

    CAS  Google Scholar 

  8. Wu G, Wang G, Fu X, Zhu L. Synthesis, crystal structure, stacking effect and antibacterial studies of a novel quaternary copper (ii) complex with quinolone. Molecules. 2003;8:287–96.

    Article  CAS  Google Scholar 

  9. Turel I, Leban I, Klintschar G. Synthesis, crystal structure, and characterization of two metal-quinolone compounds. J Inorg Biochem. 1997;66(2):77–82.

    Article  CAS  Google Scholar 

  10. Blažič B, Turel I, Bukovec N, Bukovec P, Lazarini F. Synthesis and structure of diaquadichlorobis 9-[(2-hydroxyethoxy)methyl]guanine copper(II). J Inorg Biochem. 1993;51:737–44.

    Article  Google Scholar 

  11. Turel I, Leban I, Zupancic M, Bukovec P, Gruber K. An adduct of magnesium sulfate with a member of the quinolone family (ciprofloxacin). Acta Crystallogr Sect C Cryst Struct Commun. 1996;52:2443–5.

    Article  Google Scholar 

  12. Chen ZF, Xiong RG, Zuo JL. X-ray crystal structures of Mg2+ and Ca2+ dimers of the antibacterial drugnorfloxacin. Dalton Trans. 2000;22:4013–4.

    Article  Google Scholar 

  13. Al-Mustafa J. Magnesium, calcium and barium perchlorate complexes of ciprofloxacin and norfloxacin. Acta Chim Slov. 2002;49:457–66.

    CAS  Google Scholar 

  14. Ruiz M, Perello L, Cario JS, Ortiz R, Granda SG, Diaz MR, Canton E. Cinoxacin complexes with divalent metal ions. Spectroscopic characterization. Crystal structure of a new dinuclear Cd (II) complex having two chelate-bridging carboxylate groups. Antibacterial studies. J Inorg Biochem. 1998;69:231–9.

    Article  CAS  Google Scholar 

  15. Shen LL, Pernet AG. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA. Proc Natl Acad Sci USA. 1985;82:307–11.

    Article  CAS  Google Scholar 

  16. Shen LL, Kohlbrenner WE, Weigl D, Baranowski J. Mechanism of Quinolone inhibition of DNA gyrase. J Biol Chem. 1989;264:2973–8.

    CAS  Google Scholar 

  17. Shea ME, Hiasa H. Distinct effects of the UvrD helicase on topoisomerase quinolone-DNA ternary complexes. J Biol Chem. 2000;275:14649–58.

    Article  CAS  Google Scholar 

  18. King DE, Malone R, Lilley SH. New classification and update on the quinolone antibiotics. Am Fam Physician. 2000;61:2741–8.

    CAS  Google Scholar 

  19. Drago RS. Physical methods in inorganic chemistry rein hold. London: Reinhold Publication; 1965.

  20. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  21. Vogel AI. A text book of quantitative inorganic analysis. London: Longman; 1978.

    Google Scholar 

  22. Turel I, Leban I, Klintschar G. Crystal structure and characterization of the bismuth(III) compound with quinolone family member (ciprofloxacin). Antibacterial study. J Inorg Biochem. 1997;66:241–5.

    Article  CAS  Google Scholar 

  23. Turel I, Golic L, Ramirez OLR. Crystal structure and characterization of a new copper(II)-ciprofloxacin (cf) complex [Cu(cf)(H2O)3]SO4·2H2O. Acta Chem. Slov. 1999;46(2):203–11.

    CAS  Google Scholar 

  24. Deacon GB, Phillips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  25. Sultana N, Arayne MS, Gul S, Shamim S. Sparfloxacin–metal complexes as antifungal agents—their synthesis, characterization and antimicrobial activities. J Mol Struct. 2010;975:285–91.

    Article  CAS  Google Scholar 

  26. Sadeek SA, El-Shwiniy WH. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: synthesis, structure and biological evaluation. J Mol Struct. 2010;977:243–53.

    Article  CAS  Google Scholar 

  27. Sadeek SA. Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(II), Co(II) and Fe(III) norfloxacin complexes. J Mol Struct. 2005;753:1–12.

    Article  CAS  Google Scholar 

  28. Sadeek SA, Refat SM, Hashem AH. Complexation and thermogravimetric investigation on tin(II) and tin(IV) with norfloxacin as antibacterial agent. J Coord Chem. 2006;59:759–75.

    Article  CAS  Google Scholar 

  29. Refat MS, Sadeek SA, Teleb SM. Reactions of urea with Mo(VI), V(V) and Se(IV) oxides at high temperature. J. Arg. Chem. Soc. 2004;92(4–6):23–9.

    CAS  Google Scholar 

  30. Teleb SM. Spectral and thermal studies of saccharinato complexes. Anales des la Asociacion Quimica Argentina. 2004;92(4–6):31–3.

    CAS  Google Scholar 

  31. Sadeek SA, Teleb SM, Refat MS, El-Mosallamy MAF. Preparation, thermal and vibrational studies of [UO2(acac-o-phdn)(L)] (L = H2O, py, DMF and Et3N). J Coord Chem. 2005;58:1077–85.

    Article  CAS  Google Scholar 

  32. Sadeek SA, El-Didamony AM, El-Shwiniy WH, Zordok WA. Uranium (VI) and zirconium (IV) of the second-generation quinolone antimicrobial drug norfloxacin: structure and biological activity. J. Arg. Chem. Soc. 2009;97:51–76.

    CAS  Google Scholar 

  33. Riley CM, Ross DL, vander Velde D, Takusagawa F. Characterization of the complexation of fluoroquinolone antimicrobials with metal ions by nuclear magnetic resonance spectroscopy. J Pharm Biom. Anal. 1993;11:49–59.

    Article  CAS  Google Scholar 

  34. Muhammad I, Javed I, Shahid I, Nazia I. In vitro antibacterial studies of ciprofloxacin-imines and their complexes with Cu(II), Ni(II), Co(II), and Zn(II). Turk J Biol. 2007;31:67–72.

    Google Scholar 

  35. Macias BS, Martinez CM, Sańchez NA, Hurle AD. Aphysico-chemical study of the interaction of ciprofloxacin and ofloxacin with polivaientcations. Int J Pharm. 1994;106:229–35.

    Article  Google Scholar 

  36. Rossmore HW. Nitrogen compounds. In: Block SS, editor. Disinfection, sterilization and preservation, 4th ed. Philadelphia: Lea and Febinger; 1991. p. 290.

  37. Psomas G, Dendrinou-Samara C, Philippakopoulos P, Tangoulis V, Raptopoulou CP, Samaras H, Kessissoglou DP. CuII-herbicide complexes: structure and bioactivity. Inorg Chim Acta. 1998;272:24–32.

    Article  CAS  Google Scholar 

  38. Dendrinou-Samara C, Psomas G, Raptopoulou CP, Kessissoglou DP. Copper(II) complexes with phenoxyalkanoic acids and nitrogen donor heterocyclic ligands: structure and bioactivity. J Inorg Biochem. 2001;83:7–16.

    Article  CAS  Google Scholar 

  39. Russell AD. Principles of antimicrobial activity and resistance. In: Block SS, editor. Disinfection, sterilization and preservation, 4th ed. Philadelphia: Lea and Febinger; 1991. p. 27.

  40. Stevens WJ, Krauss M, Bosch H, Jasien PG. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can J Chem. 1992;70:612–30.

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, StratmannJr RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA. Gaussian 98, Revision A.6. Pittsburgh: Gaussian, Inc.; 1998.

    Google Scholar 

  42. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev A. 1965;140:1133–8.

    Article  Google Scholar 

  43. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–100.

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  45. Flurry RL Jr. Molecular orbital theory of bonding in organic molecules. New York: Marcel Dekker; 1968.

    Google Scholar 

  46. Drevenšek P, Zupančič T, Pihlar B, Jerala R, Kolitsch U, Plaper A, Turel I. Mixed-valence Cu(II)/Cu(I) complex of quinolone ciprofloxacin isolated by a hydrothermal reaction in the presence of l-histidine: comparison of biological activities of various copper–ciprofloxacin compounds. J Inorg Biochem. 2005;99:432–42.

    Article  Google Scholar 

  47. Živec P, Perdih F, Turel I, Giester G, Psomas G. Different types of copper complexes with the quinolone antimicrobial drugs ofloxacin and norfloxacin: structure, DNA- and albumin-binding. J Inorg Biochem. 2012;117:35–47.

    Article  Google Scholar 

  48. Turel I, Leban I, Gruber K, Bukovec N. Synthesis, crystal structure, and characterization of three novel compounds of the quinolone family member (norfloxacin). J Inorg Biochem. 1996;61:197–212.

    Article  CAS  Google Scholar 

  49. Drevenšek P, Košmrlj J, Giester G, Skauge T, Sletten E, Sepčić K, Turel I. X-ray crystallographic, NMR and antimicrobial activity studies of magnesium complexes of fluoroquinolones—racemic ofloxacin and its S-form, levofloxacin. J Inorg Biochem. 2006;100:1755–63.

    Article  Google Scholar 

  50. Tangoulis V, Psomas G, Denrrinou-Samara C, Raptopoulau CP, Terzis A, Kessissoglau DP. A two-dimensional manganese(II) carboxylato polymer. structure, magnetism, and EPR study. Inorg Chem. 1996;35:7655–60.

    Article  CAS  Google Scholar 

  51. Huang D, Wang W, Zhng X, Chen C, Chen F, Liu Q, Liao D, Li L, Sun L. Synthesis, structural characterizations and magnetic properties of a series of mono-, di- and polynuclear manganese pyridinecarboxylate compounds. Eur J Inorg Chem. 2004;7:1454–64.

    Article  Google Scholar 

  52. Armentano D, de-Munno G, Guerra F, Faus J, Lloret F, Julve M. 2,2′-Bipyrimidine- and 2,3-bis(2-pyridyl)pyrazine-containing manganese(II) compounds: structural and magnetic properties. Dalton Trans. 2003;24:4626–34.

    Article  Google Scholar 

  53. McCann M, Casey MT, Devereux M, Curran M, Mckee V. Manganese(II) complexes of hexanedioic and heptanedioic acids: X-ray crystal structures of [Mn(O2C(CH2)4CO2(phen)2H2O] 7H2O and [Mn(phen)2(H2O)2][Mn(O2C(CH2)5CO2) [phen)2H2O](O2C(CH2)5CO2)12.5H2O. Polyhedron. 1997;16:2741–8.

    Article  CAS  Google Scholar 

  54. Reynolds JG, Biggs WR. Application of size exclusion chromatography coupled with element-specific detection to the study of heavy crude oil and residua processing. Accts Chem Res. 1988;21:319–26.

    Article  CAS  Google Scholar 

  55. Bu XR, Mintz EA. Synthesis and characterization of vanadyl complexes with unsymmetrical bis-schiff base ligands containing acis-N2O2 coordinate chromophore. Polyhedron. 1996;15:4585–91.

    Article  CAS  Google Scholar 

  56. Mani V, Lloffman JT, Dimayuga VL, Dwight T, Carrano CJ. A comparison of vanadylacetylacetonate complexes of N2O heteroscorpionate ligands that vary systematically in donor set. Inorg Chim Acta. 2007;360:529–34.

    Article  Google Scholar 

  57. Zborowski K, Grybos R, Proniewicz LM. Molecular structures of oxovanadium (IV) complexes with maltol and kojic acid: a quantum mechanical study. Inorg. Chem. Communications. 2005;8:76–8.

    Article  CAS  Google Scholar 

  58. Mimoun H, Saussine L, Daire E, Postel M, Fischer J, Weiss R. Vanadium (V) peroxy complexes. New versatile biomimetic reagents for epoxidation of olefins and hydroxylation of alkanes and aromatic hydrocarbons. J Am Chem Soc. 1983;105:3101–10.

    Article  CAS  Google Scholar 

  59. Comba P, Kuwata S, Linti G, Tarnai M, Wadepohl H. Synthesis and oxidation of vanadyl complexes containing bispidine ligands. Eur J Inorg Chem. 2007;5:657–64.

    Article  Google Scholar 

  60. Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC. Chemistry and insulin-mimetic properties of bis(acetylacetonate)oxovanadium (IV) and derivatives. Inorg Chem. 2000;39:406–16.

    Article  CAS  Google Scholar 

  61. Turel I, Golobic A, Klazar A, Pihlar B, Buglyo P, Tolis E, Rehder D, Sepcic K. Interactions of oxovanadium (IV) and the quinolone family member—ciprofloxacin. J Inorg Biochem. 2003;95:199–207.

    Article  CAS  Google Scholar 

  62. Christofis P, Katsarou M, Papakyriakou A, Sanakis Y, Katsaros N, Pasomas G. Mononuclear metal complexes with piroxicam: synthesis, structure and biological activity. J Inorg Biochem. 2005;99:2197–210.

    Article  CAS  Google Scholar 

  63. Salcedo R, Zaragoza IP, Martínez-Magadán JM, García-Cruz I. Electronic structure in different environments for vanadyl porphyrinate molecules present in crude oil. J. Mol. Struct. (Theochem). 2003;626:195–201.

    Article  CAS  Google Scholar 

  64. Fleming I. Frontier orbitals and organic chemical reactions. London: Wiley; 1976.

    Google Scholar 

  65. Kurtaran R, Odabasoglu S, Azizoglu A, Kara H, Atakol O. Experimental and computational study on [2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine]-(dithiocyanato)mercury(II). Polyhedron. 2007;26:5069–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael A. Zordok.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zordok, W.A., Sadeek, S.A. Synthesis, spectroscopic, structure, thermal analyses, and biological activity evaluation of new norfloxacin vanadium (V) solvates (L) (L = An, DMF, Py, Et3N and o-Tol). J Therm Anal Calorim 128, 971–991 (2017). https://doi.org/10.1007/s10973-016-5979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5979-4

Keywords

Navigation