Skip to main content
Log in

Investigating thermal and kinetic parameters of lithium titanate formation by solid-state method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The lithium titanate formation through solid-state reaction between lithium carbonate and titanium dioxide was investigated with the help of thermogravimetry technique, under an inert atmosphere from ambient temperature to 1273 K at five (2, 5, 10, 15 and 20 K min−1) heating rates. The kinetic mechanism involved in the reaction was proposed by employing Criado method and Zhang method. The results revealed that the three-dimensional diffusion mechanism is involved in the formation of lithium titanate. Also, the kinetic parameters were determined by using Fynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunsose (KAS) isoconversional kinetic methods. The value of activation energy and pre-exponential calculated from FWO is 214.52 kJ mol−1 and 4.96 × 10−10 min−1, whereas corresponding values calculated from KAS method are 211.27 kJ mol−1 and 6.23 × 10−9 min−1, respectively. Furthermore, thermodynamic parameters such as enthalpy, entropy and Gibb’s free energy were determined at all heating rates, in order to evaluate spontaneity of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sonak S, Rakesh R, Jain U, Mukherjee A, Kumar S, Krishnamurthy S. Thermogravimetric study of the kinetics of lithium titanate reduction by hydrogen. Fusion Eng Des. 2014;89:2738–42.

    Article  CAS  Google Scholar 

  2. Carella E, Hernandez T. Ceramics for fusion reactors: the role of the lithium orthosilicate as breeder. Phys B Condens Matter. 2012;407:4431–5.

    Article  CAS  Google Scholar 

  3. Hoshino T, Yasumoto M, Tsuchiya K, Hayashi K, Nishimura H, Suzuki A, Terai T. Non-stoichiometory and vaporization characteristic of Li2.1TiO3.05 in hydrogen atmosphere. Fusion Eng Des. 2007;82:2269–73.

    Article  CAS  Google Scholar 

  4. Alvani C, Carconi PL, Casadio S, Roux N. Effects of pre-treatments of Li2TiO3 pebbles on the release of tritium generated during short irradiations. Fusion Eng Des. 2001;58–59:701–5.

    Article  Google Scholar 

  5. Billone MC. Thermal and tritium transport in Li2O and Li2ZrO3. J Nucl Mater. 1996;233–237(Part 2):1462–6.

    Article  Google Scholar 

  6. Bertone PC, Jassby DL. Tritium recovery from lithium oxide pellets. J Nucl Mater. 1984;123:884–9.

    Article  CAS  Google Scholar 

  7. Deptua A, Brykaa M, Aada W, Olczak T, Sartowska B, Chmielewski AG, Wawszczak D, Alvani C. Preparation of spherical particles of Li2TiO3 (with diameters below 100 μm) by sol–gel process. Fusion Eng Des. 2009;84:681–4.

    Article  Google Scholar 

  8. Vittal Rao TV, Bamankar YR, Mukerjee SK, Aggarwal SK. Preparation and characterization of Li2TiO3 pebbles by internal gelation sol–gel process. J Nucl Mater. 2012;426:102–8.

    Article  CAS  Google Scholar 

  9. Cruz D, Pfeiffer H, Bulbulian S. Preparation and characterization of Li2TiO3 pebbles by internal gelation sol–gel process. Solid State Sci. 2006;8:470–5.

    Article  CAS  Google Scholar 

  10. Yu CL, Yanagisawa K, Kamiya S, Kozawa T, Ueda T. Preparation and characterization of Li2TiO3 pebbles by internal gelation sol–gel process. Ceram Int. 2014;40:1901–8.

    Article  CAS  Google Scholar 

  11. Jung CH, Park JY, Kim WJ, Ryu WS, Lee SJ. Characterizations of Li2TiO3 prepared by a solution combustion synthesis and fabrication of spherical particles by dry-rolling granulation process. Fusion Eng Des. 2006;81:1039–44.

    Article  CAS  Google Scholar 

  12. Mandal D, Shenoi MRK, Ghosh SK. Synthesis & fabrication of lithium-titanate pebbles for ITER breeding blanket by solid state reaction & spherodization. Fusion Eng Des. 2010;85:819–23.

    Article  CAS  Google Scholar 

  13. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95:733–9.

    Article  Google Scholar 

  14. Sádovská G, Honcová P, Sádovský Z. Kinetics and enthalpy of crystallization of uric acid dehydrate. Thermochim Acta. 2013;566:211–3.

    Article  Google Scholar 

  15. Kourková L, Sádovská G. Heat capacity, enthalpy and entropy of Li2CO3 at 303.15–563.15 K. Thermochim Acta. 2007;452:80–1.

    Article  Google Scholar 

  16. Sádovská G, Wolf G. Enthalpy of dissolution and thermal dehydration of calcium oxalate hydrates. J Therm Anal Calorim. 2014;119:2063–8.

    Article  Google Scholar 

  17. Goel N, Singh UP. Syntheses, structural, computational, and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases. J Phys Chem A. 2013;117:10428–37.

    Article  CAS  Google Scholar 

  18. He Y, Liao S, Chen Z, Li Y, Xia Y, Wu W, Li B. Nonisothermal kinetics study with isoconversional procedure and DAEM: LiCoPO4 synthesized from thermal decomposition of the precursor. Ind Eng Chem Res. 2013;52:1870–6.

    Article  CAS  Google Scholar 

  19. Ullah A, Iqbal Y, Mohmood T, Mahmood A, Naeem A, Hamayun M. Kinetic analysis on the synthesis of Mg0.95Zn0.05TiO3 microwave dielectric ceramic by polymeric precursor method. Ceramic Int. 2015;41:15089–96.

    Article  CAS  Google Scholar 

  20. Sonak S, Jain U, Sahu AK, Kumar S, Krishnamurthy N. Thermogravimetric analysis and kinetic study of formation of lithium titanate by solid state route. J Nucl Mater. 2015;457:88–93.

    Article  CAS  Google Scholar 

  21. Flynn J, Wall L. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Pol Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  22. Ozawa T. A new method of analysing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  23. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702.

    Article  CAS  Google Scholar 

  24. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22.

    Google Scholar 

  25. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  26. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  27. Quan C, Li A, Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manage. 2009;29:2353–60.

    Article  CAS  Google Scholar 

  28. Núñez L, Fraga F, Núñez MR, Villanueva M. Thermogravimetric study of the decomposition process of the system BADGE (n = 0)/1,2 DCH. Polymer. 2000;41:4635–41.

    Article  Google Scholar 

  29. Criado JM, Málek J. A. Ortega. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  30. Pérez-Maqueda LA, Criado JM. The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Calorim. 2000;60:909–15.

    Article  Google Scholar 

  31. Zhang JJ, Ren N, Bai JH, Xu SL. Synthesis and thermal decomposition reaction kinetics of complexes of [Sm2(m-CIBA)6(phen)2].2H2O and [Sm2(m-BrBA)6(phen)2].2H2O. Int J Chem Kinet. 2007;39:67–74.

    Article  Google Scholar 

  32. Zhang JJ, Ren N. A new kinetic method of processing TA data. Chin J Chem. 2004;22:1459–62.

    Article  CAS  Google Scholar 

  33. Olszak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.

    Article  CAS  Google Scholar 

  34. Young D. Decomposition of solids. Oxford: Pergamon Press; 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Uniyal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Uniyal, P. Investigating thermal and kinetic parameters of lithium titanate formation by solid-state method. J Therm Anal Calorim 128, 875–882 (2017). https://doi.org/10.1007/s10973-016-5977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5977-6

Keywords

Navigation