Skip to main content
Log in

Synthesis and properties of bulk-biodegradable phase change materials based on polyethylene glycol for thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The bulk-biodegradable solid–solid phase change materials (SSPCMs) based on phase change polyethylene glycol (PEG) were synthesized by solvent-free polyaddition. On the basis of the fact that the water absorption is up to 800 mass% and that the poly(ethylene oxide) molecular chains can be degraded by microorganisms, the bulk-biodegradable mechanism of SSPCMs was put forward and studied. The X-ray diffraction patterns and the polarizing optical microscopy images show the SSPCMs possess the defective crystal and small grain compared with PEG. The differential scanning calorimetry data demonstrate the melting temperature and enthalpy of the synthesized SSPCMs are, respectively, 41 °C and 128 J g−1. The bulk-biodegradable SSPCMs have the preeminent thermal reliability and the high thermal stability due to the onset thermal degradation temperature above 302 °C, which will give a good insight into bulk-biodegradable PCM system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Giro-Paloma J, Konuklu Y, Fernández AI. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material. Sol Energy. 2015;112:300–9.

    Article  CAS  Google Scholar 

  2. Li W, Song G, Tang G, Chu X, Ma S, Liu C. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy. 2011;36:785–91.

    Article  CAS  Google Scholar 

  3. Sarı A, Biçer A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs. Sol Energy Mater Sol Cells. 2012;101:114–22.

    Article  Google Scholar 

  4. Fu X, Liu Z, Xiao Y, Wang J, Lei J. Preparation and properties of lauric acid/diatomite composites as novel form-stable phase change materials for thermal energy storage. Energy Build. 2015;104:244–9.

    Article  Google Scholar 

  5. He F, Wang X, Wu D. Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renew Energy. 2015;74:689–98.

    Article  CAS  Google Scholar 

  6. Fu X, Liu Z, Wu B, Wang J, Lei J. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim. 2015;123:1173–81.

    Article  Google Scholar 

  7. Konuklu Y, Unal M, Paksoy HO. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2014;120:536–42.

    Article  CAS  Google Scholar 

  8. Pielichowska K, Pielichowski K. Biodegradable PEO/cellulose-based solid-solid phase change materials. Polym Adv Technol. 2011;22:1633–41.

    Article  CAS  Google Scholar 

  9. Karaman S, Karaipekli A, Sarı A, Biçer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95:1647–53.

    Article  CAS  Google Scholar 

  10. Konuklu Y. Microencapsulation of phase change material with poly(ethylacrylate) shell for thermal energy storage. Int J Energy Res. 2014;38:2019–29.

    Article  CAS  Google Scholar 

  11. Aydın AA. In situ preparation and characterization of encapsulated high-chain fatty acid ester-based phase change material (PCM) in poly(urethane-urea) by using amino alcohol. Chem Eng J. 2013;231:477–83.

    Article  Google Scholar 

  12. Yang X, Yuan Y, Zhang N, Cao X, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.

    Article  CAS  Google Scholar 

  13. Cellat K, Beyhan B, Güngör C, Konuklu Y, Karahan O, Dündar C, et al. Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials. Energy Build. 2015;106:156–63.

    Article  Google Scholar 

  14. Wang Y, Xia TD, Feng HX, Zhang H. Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renew Energy. 2011;36:1814–20.

    Article  CAS  Google Scholar 

  15. Al-Shannaq R, Farid M, Al-Muhtaseb S, Kurdi J. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials. Sol Energy Mater Sol Cells. 2015;132:311–8.

    Article  CAS  Google Scholar 

  16. Sarı A, Alkan C, Lafçı Ö. Synthesis and thermal properties of poly(styrene-co-ally alcohol)-graft-stearic acid copolymers as novel solid–solid PCMs for thermal energy storage. Sol Energy. 2012;86:2282–92.

    Article  Google Scholar 

  17. Chen C, Liu W, Wang H, Peng K. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy. 2015;152:198–206.

    Article  CAS  Google Scholar 

  18. Xi P, Zhao F, Fu P, Wang X, Cheng B. Synthesis, characterization, and thermal energy storage properties of a novel thermoplastic polyurethane phase change material. Mater Lett. 2014;121:15–8.

    Article  CAS  Google Scholar 

  19. Sarı A, Alkan C, Biçer A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid–solid phase change materials for thermal energy storage. Mater Chem Phys. 2012;133:87–94.

    Article  Google Scholar 

  20. Sarı A, Alkan C, Biçer A, Karaipekli A. Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials. Sol Energy Mater Sol Cells. 2011;95:3195–201.

    Article  Google Scholar 

  21. Fu X, Xiao Y, Hu K, Wang J, Lei J, Zhou C. Thermosetting solid–solid phase change materials composed of poly(ethylene glycol)-based two components: flexible application for thermal energy storage. Chem Eng J. 2016;291:138–48.

    Article  CAS  Google Scholar 

  22. Cao Q, Liu P. Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur Polym J. 2006;42:2931–9.

    Article  CAS  Google Scholar 

  23. Fu X, Kong W, Zhang Y, Jiang L, Wang J, Lei J. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015;5:68881–9.

    Article  CAS  Google Scholar 

  24. Liu Z, Fu X, Jiang L, Wu B, Wang J, Lei J. Solvent-free synthesis and properties of novel solid–solid phase change materials with biodegradable castor oil for thermal energy storage. Sol Energy Mater Sol Cells. 2016;147:177–84.

    Article  CAS  Google Scholar 

  25. Zhou XM. Preparation and characterization of PEG/MDI/PVA copolymer as solid–solid phase change heat storage material. J Appl Polym Sci. 2009;113:2041–5.

    Article  CAS  Google Scholar 

  26. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev. 2011;15:1373–91.

    Article  CAS  Google Scholar 

  27. Yang R, Xu H, Zhang Y. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Sol Energy Mater Sol Cells. 2003;80:405–16.

    Article  CAS  Google Scholar 

  28. Zhang XX, Fan YF, Tao XM, Yick KL. Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interface Sci. 2005;281:299–306.

    Article  CAS  Google Scholar 

  29. Chen B, Wang X, Zeng R, Zhang Y, Wang X, Niu J, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exp Therm Fluid Sci. 2008;32:1638–46.

    Article  CAS  Google Scholar 

  30. Li M, Wu Z, Kao H, Tan J. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manag. 2011;52:3275–81.

    Article  CAS  Google Scholar 

  31. Bao L, Luo X, Zhang D, Lei J, Cao Q, Wang J. Synthesis, characterization, and self-assembly behaviors of a biodegradable and anti-clotting poly (EDTA-diol-co-butylene adipate glycol urethanes). J Mater Chem B. 2014;2:5862–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from National Natural Science Foundation of China (Grants 51603132) and the program for excellent young talent (Yunnan University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changlin Zhou or Jingxin Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Zhang, Y., Kong, W. et al. Synthesis and properties of bulk-biodegradable phase change materials based on polyethylene glycol for thermal energy storage. J Therm Anal Calorim 128, 643–651 (2017). https://doi.org/10.1007/s10973-016-5959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5959-8

Keywords

Navigation