Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1807–1814 | Cite as

Cooling rate “window” in the crystallization of metacetamol form II

  • V. A. DrebushchakEmail author
  • L. McGregor
  • D. A. Rychkov
Article

Abstract

Melting and crystallization of metacetamol (C8H9NO2, N-(3-hydroxyphenyl)acetamide, structural isomer of paracetamol) were measured using DSC cycling heating–cooling between room temperature and 165 °C with constant heating rate of 6 °C min−1 and variable cooling rate ranging from 3 to 24 °C min−1. The selection of the cooling rate allows us to control the crystallization of metacetamol into one of its two polymorphs, I or II. Pure form II of metacetamol (recently discovered) is crystallized after the cooling rate of 6 °C min−1. Increase or decrease in the cooling rate suppresses the crystallization of the form II and produces the form I with remnant amorphous phase and a small impurity of the form II. The melting points and enthalpies of fusion are 420 K and 26.0 ± 1.3 kJ mol−1 for the form I and 399 K and 21.3 ± 1.1 kJ mol−1 for the form II, respectively.

Keywords

Cooling rate DSC Metacetamol Polymorphism 

Notes

Acknowledgements

The experiments were supported by a Year Abroad Program of the School of Chemistry, University of Edinburgh (LMcG), Russian Ministry of Education and Science, project 1828 and a project No И-37 of the Siberian Branch of Russian Academy of Sciences (DR). Denis Rychkov and Lindsay McGregor thank professors Elena Boldyreva and Colin R. Pulham for supervision. VAD acknowledges that his work was supported by state Assignment Project No. 0330-2016-004.

References

  1. 1.
    Haisa M, Kashino S, Kawai R, Maeda H. The monoclinic form of p-hydroxyacetanilide. Acta Cryst. 1976;B32:1283–5.CrossRefGoogle Scholar
  2. 2.
    Haisa M, Kashino S, Maeda H. The orthorhombic form of p-hydroxyacetanilide. Acta Cryst. 1974;B30:2510–2.CrossRefGoogle Scholar
  3. 3.
    Perrin M-A, Neumann MA, Elmaleh H, Zaske L. Crystal structure determination of the elusive paracetamol form III. Chem Commun. 2009;3181–3.Google Scholar
  4. 4.
    Smith SJ, Bishop MM, Montgomery JM, Hamilton TP, Vohra YK. Polymorphism in paracetamol: evidence of additional forms IV and V at high pressure. J Phys Chem A. 2014;118:6068–77.Google Scholar
  5. 5.
    McGregor L, Rychkov DA, Coster PL, Day S, Drebushchak VA, Achkasov AF, Nichol GS, Pulham CR, Boldyreva EV. A new polymorph of metacetamol. CrystEngComm. 2015;17:6183–92.CrossRefGoogle Scholar
  6. 6.
    Burger A, Ramberger R. On the polymorphism of pharmaceuticals and other molecular crystals. II. Applicability of thermodynamic rules. Mikrochim Acta. 1979;72:273–316.CrossRefGoogle Scholar
  7. 7.
    Di Martino P, Conflant P, Drache M, Huvenne J-P, Guyot-Hermann A-M. Preparation and physical characterization of forms II and III of paracetamol. J Therm Anal. 1997;48:447–58.CrossRefGoogle Scholar
  8. 8.
    Di Martino P, Palmieri GF, Martelli S. Molecular mobility of the paracetamol amorphous form. Chem Pharm Bull. 2000;48:1105–8.CrossRefGoogle Scholar
  9. 9.
    Politov AA, Kostrovskii VG, Boldyrev VV. Conditions of preparation and crystallization of amorphous paracetamol. Russ J Phys Chem. 2001;75:1903–11.Google Scholar
  10. 10.
    Boldyreva EV, Drebushchak VA, Paukov IE, Kovalevskaya YA, Drebushchak TN. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J Therm Anal Calorim. 2004;77:607–23.CrossRefGoogle Scholar
  11. 11.
    Espeau Ph, Céolin R, Tamarit J-L, Perrin M-A, Gauchi J-P, Leveiller F. Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams. J Pharm Sci. 2005;94:524–39.CrossRefGoogle Scholar
  12. 12.
    Drebushchak VA. Calibration coefficient of a heat-flow DSC; Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8.CrossRefGoogle Scholar
  13. 13.
    Boldyreva EV, Arkhipov SG, Drebushchak TN, Drebushchak VA, Losev EA, Matvienko AA, Minkov VS, Rychkov DA, Seryotkin YV, Stare J, Zakharov BA. Isoenergetic polymorphism: the puzzle of tolazamide as a case study. Chem Eur J. 2015;21:15395–404.CrossRefGoogle Scholar
  14. 14.
    Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  15. 15.
    Cahn JW, Hillig WB, Sears GW. The molecular mechanism of solidification. Acta Metall. 1964;12:1421–39.CrossRefGoogle Scholar
  16. 16.
    Jackson KA, Uhlmann DR, Hunt JD. On the nature of crystal growth from the melt. J Cryst Growth. 1967;1:1–36.CrossRefGoogle Scholar
  17. 17.
    Kidyarov BI, Bolkhovityanov YuB, Demyanov EA. Statistical investigation of the kinetics of crystal nucleation in melt. Zhurnal Phys Khim. 1970;44:668–72 (in Russian).Google Scholar
  18. 18.
    Langer JS. Instabilities and pattern formation in crystal growth. Rev Mod Phys. 1980;52:1–28.CrossRefGoogle Scholar
  19. 19.
    Andronis V, Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non Cryst Solids. 2000;271:236–48.CrossRefGoogle Scholar
  20. 20.
    Vali G. Repeatability and randomness in heterogeneous freezing nucleation. Atmos Chem Phys. 2008;8:5017–31.CrossRefGoogle Scholar
  21. 21.
    Bach A, Fischer D, Jansen M. Metastable phase formation of indium monochloride from an amorphous feedstock. Z Anorg Allg Chem. 2013;639:465–7.CrossRefGoogle Scholar
  22. 22.
    Pishchur DP, Drebushchak VA. Recommendations on DSC calibration. How to escape the transformation of a random error into the systematic error. J Therm Anal Calorim. 2016;124:951–8.CrossRefGoogle Scholar
  23. 23.
    Squires GL. Practical physics. 4th ed. Cambridge: Cambridge University Press; 2001.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Novosibirsk State UniversityPirogova, NovosibirskRussia
  2. 2.V.S. Sobolev Institute of Geology and MineralogySB RASNovosibirskRussia
  3. 3.School of Chemistry and Centre for Science at Extreme ConditionsThe University of EdinburghEdinburghScotland, UK
  4. 4.Institute of Solid State Chemistry and MechanochemistryNovosibirskRussia

Personalised recommendations