Skip to main content
Log in

Protic ionic liquid applied to enhance the immobilization of lipase in sol–gel matrices

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work evaluated the capacity of protic ionic liquid (PIL) used as an additive to enhance the immobilization of lipase from Bacillus sp. in a sol–gel matrix. The immobilized derivatives were characterized with respect to the specific surface area, adsorption–desorption isothermic values, pore volume and size by nitrogen adsorption, thermal analysis and full recovery of activity. The lipases were immobilized using different PILs of the same cation (N-methylmonoethanolamine) and different anions (acetate, propionate, butyrate and pentanoate). The results showed that the total recovery of activity for the samples encapsulated in the presence of PIL was always higher than those without the encapsulated additive (total activity yield, Ya = 71%), particularly when using the more hydrophobic nature PILs (Ya = 305%), and at concentrations of 0.5 mass%. The positive effect of using PILs was also observed in the formation of the porous structure of the biocatalysts, as well as the increases in surface area (78 to 278 m2 g−1) and pore volume (0.018 to 0.414 cc g−1). The thermal analysis has revealed the key role of water content on the hydration shell of the enzyme caused by the change in the alkyl chain of ionic liquids, showing that the PILs are an excellent alternative for immobilization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reetz MT, Tielmann P, Wiesenhofer W, Konen W, Zonta A. Second generation sol–gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal. 2003;345(6–7):717–28. doi:10.1002/adsc.200303016.

    Article  CAS  Google Scholar 

  2. Reetz MT, Zonta A, Simpelkamp J. Efficient immobilization of lipases by entrapment in hydrophobic sol–gel materials. Biotechnol Bioeng. 1996;49(5):527–34.

    Article  CAS  Google Scholar 

  3. Yagonia CFJ, Park K, Yoo YJ. Immobilization of Candida antarctica lipase B on the surface of modified sol–gel matrix. J Sol-Gel Sci Technol. 2014;69(3):564–70.

    Article  CAS  Google Scholar 

  4. Zubiolo C, Santos RCA, Carvalho NB, Soares CMF, Lima AS, Santana LCLD. Encapsulation in a sol–gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue. Bioprocess Biosyst Eng. 2014;37(9):1781–8.

    CAS  Google Scholar 

  5. Souza RL, de Faria ELP, Figueiredo RT, Freitas LdS, Iglesias M, Mattedi S, et al. Protic ionic liquid as additive on lipase immobilization using silica sol–gel. Enzyme Microb Technol. 2013;52(3):141–50.

    Article  Google Scholar 

  6. Binod P, Palkhiwala P, Gaikaiwari R, Nampoothiri KM, Duggal A, Dey K, et al. Industrial enzymes—present status and future perspectives for India. J Sci Ind Res India. 2013;72(5):271–86.

    CAS  Google Scholar 

  7. Kapoor M, Gupta MN. Lipase promiscuity and its biochemical applications. Process Biochem. 2012;47(4):555–69.

    Article  CAS  Google Scholar 

  8. Jaeger K-E, Eggert T. Lipases for biotechnology. Curr Opin Biotechnol. 2002;13(4):390–7.

    Article  CAS  Google Scholar 

  9. Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv. 2001;19(8):627–62.

    Article  CAS  Google Scholar 

  10. Carvalho NB, Silva MAD, Fricks AT, Franceschi E, Dariva C, Zanin GM, et al. Evaluation of activity of Bacillus lipase (free and immobilized) treated with compressed propane. J Mol Catal B-Enzym. 2014;99:130–5.

    Article  CAS  Google Scholar 

  11. Cabrera-Padilla RY, Albuquerque M, Figueiredo RT, Fricks AT, Franceschi E, Lima AS, et al. Immobilization and characterisation of a lipase from a new source, Bacillus sp ITP-001. Bioprocess Biosyst Eng. 2013;36(10):1385–94.

    Article  CAS  Google Scholar 

  12. Kumar D, Parshad R, Gupta VK. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43. Int J Biol Macromol. 2014;66:97–107.

    Article  CAS  Google Scholar 

  13. Barbosa JMP, Souza RL, de Melo CM, Fricks AT, Soares CMF, Lima AS. Biochemical characterisation of lipase from a new strain of Bacillus sp ITP-001. Quim Nova. 2012;35(6):1173–8.

    Article  CAS  Google Scholar 

  14. Guncheva M, Zhiryakova D. Catalytic properties and potential applications of Bacillus lipases. J Mol Catal B-Enzym. 2011;68(1):1–21.

    Article  CAS  Google Scholar 

  15. Huang XJ, Yu AG, Xu ZK. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol. 2008;99(13):5459–65.

    Article  CAS  Google Scholar 

  16. Souza R, Faria EP, Figueiredo R, Fricks A, Zanin G, Santos OA, et al. Use of polyethylene glycol in the process of sol–gel encapsulation of Burkholderia cepacia lipase. J Therm Anal Calorim. 2014;117:301–6.

    Article  CAS  Google Scholar 

  17. Lee SH, Doan TTN, Ha SH, Chang W-J, Koo Y-M. Influence of ionic liquids as additives on sol–gel immobilized lipase. J Mol Catal B-Enzym. 2007;47(3–4):129–34.

    Article  CAS  Google Scholar 

  18. Karout A, Pierre AC. Silica xerogels and aerogels synthesized with ionic liquids. J Non-Cryst Solids. 2007;353(30–31):2900–9.

    Article  CAS  Google Scholar 

  19. Hu Y, Tang SS, Jiang L, Zou B, Yang J, Huang H. Immobilization of Burkholderia cepacia lipase on functionalized ionic liquids modified mesoporous silica SBA-15. Process Biochem. 2012;47(12):2291–9.

    Article  CAS  Google Scholar 

  20. Hara P, Mikkola JP, Murzin DY, Kanerva LT. Supported ionic liquids in Burkholderia cepacia lipase-catalyzed asymmetric acylation. J Mol Catal B-Enzym. 2010;67(1–2):129–34.

    Article  CAS  Google Scholar 

  21. Zarcula C, Corici L, Croitoru R, Ursoiu A, Peter F. Preparation and properties of xerogels obtained by ionic liquid incorporation during the immobilization of lipase by the sol-gel method. J Mol Catal B-Enzym. 2010;65(1–4):79–86.

    Article  CAS  Google Scholar 

  22. Zou B, Song C, Xu X, Xia J, Huo S, Cui F. Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials. Appl Surf Sci. 2014;311:62–7.

    Article  CAS  Google Scholar 

  23. Carvalho NB, Lima AS, Soares CMF. Use of modified silicas for lipase immobilization. Quim Nova. 2015;38(3):399–409.

    CAS  Google Scholar 

  24. Thuy Pham TP, Cho C-W, Yun Y-S. Environmental fate and toxicity of ionic liquids: a review. Water Res. 2010;44(2):352–72.

    Article  Google Scholar 

  25. Ventura SPM, Gonçalves AMM, Sintra T, Pereira JL, Gonçalves F, Coutinho JAP. Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology. 2013;22(1):1–12.

    Article  CAS  Google Scholar 

  26. Alvarez VH, Dosil N, Gonzalez-Cabaleiro R, Mattedi S, Martin-Pastor M, Iglesias M, et al. Bronsted ionic liquids for sustainable processes: synthesis and physical properties. J Chem Eng Data. 2010;55(2):625–32.

    Article  CAS  Google Scholar 

  27. Maximo GJ, Santos RJBN, Lopes-da-Silva JA, Costa MC, Meirelles AJA, Coutinho JAP. Lipidic protic ionic liquid crystals. ACS Sustain Chem Eng. 2014;2(4):672–82.

    Article  CAS  Google Scholar 

  28. Alvarez VH, Mattedi S, Martin-Pastor M, Aznar M, Iglesias M. Synthesis and thermophysical properties of two new protic long-chain ionic liquids with the oleate anion. Fluid Phase Equilib. 2010;299(1):42–50.

    Article  CAS  Google Scholar 

  29. Greaves TL, Drummond CJ. Protic ionic liquids: properties and applications. Chem Rev. 2008;108(1):206–37.

    Article  CAS  Google Scholar 

  30. Barbosa JMP, Souza RL, Fricks AT, Zanin GM, Soares CMF, Lima AS. Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system. J Chromatogr B. 2011;879(32):3853–8.

    Article  CAS  Google Scholar 

  31. INPI, Patent submission No. PI0306829-3, 11 Sept 2003.

  32. Soares CMF, De Castro HF, De Moraes FF, Zanin GM. Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl Biochem Biotechnol. 1999;77–9:745–57.

    Article  Google Scholar 

  33. Souza RL, Resende WC, Barao CE, Zanin GM, de Castro HF, Santos OAA, et al. Influence of the use of Aliquat 336 in the immobilization procedure in sol-gel of lipase from Bacillus sp ITP-001. J Mol Catal B-Enzym. 2012;84:152–9.

    Article  CAS  Google Scholar 

  34. Zhou Y. Recent advances in ionic liquids for synthesis of inorganic nanomaterials. Curr Nanosci. 2005;1(1):35–42.

    Article  CAS  Google Scholar 

  35. Vila-Real H, Alfaia AJ, Rosa JN, Gois PMP, Rosa ME, Calado ART, et al. alpha-Rhamnosidase and beta-glucosidase expressed by naringinase immobilized on new ionic liquid sol–gel matrices: activity and stability studies. J Biotechnol. 2011;152(4):147–58.

    Article  CAS  Google Scholar 

  36. Paul C, Borza P, Marcu A, Rusu G, Bîrdeanu M, Zarcula SM, et al. Influence of the physico-chemical characteristics of the hybrid matrix on the catalytic properties of sol–gel entrapped Pseudomonas fluorescens lipase. Nanomater Nanotechnol. 2016;. doi:10.5772/62194.

    Google Scholar 

  37. Soares CMF, dos Santos OA, de Castro HF, de Moraes FF, Zanin GM. Characterization of sol–gel encapsulated lipase using tetraethoxysilane as precursor. J Mol Catal B-Enzym. 2006;39(1–4):69–76.

    Article  CAS  Google Scholar 

  38. Wei Y, Xu JG, Dong H, Dong JH, Qiu KY, Jansen-Varnum SA. Preparation and physisorption characterization of d-glucose-templated mesoporous silica sol–gel materials. Chem Mater. 1999;11(8):2023–9.

    Article  CAS  Google Scholar 

  39. Mukherjee I, Mylonakis A, Guo Y, Samuel SP, Li SX, Wei RY, et al. Effect of nonsurfactant template content on the particle size and surface area of monodisperse mesoporous silica nanospheres. Micropor Mesopor Mater. 2009;122(1–3):168–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of FAPITEC/SE, CAPES and CNPq (Process 23038-028317/2008-44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, R.L., Faria, E.L.P., Figueiredo, R.T. et al. Protic ionic liquid applied to enhance the immobilization of lipase in sol–gel matrices. J Therm Anal Calorim 128, 833–840 (2017). https://doi.org/10.1007/s10973-016-5950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5950-4

Keywords

Navigation