Skip to main content
Log in

Flexible cellulose acetate nano-felts absorbed with capric–myristic–stearic acid ternary eutectic mixture as form-stable phase-change materials for thermal energy storage/retrieval

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this study was to explore an innovative type of form-stable phase-change materials (PCMs) with flexible cellulose acetate (CA) nano-fibrous felts (nano-felts) absorbed with capric–myristic–stearic acid ternary eutectic mixture for thermal energy storage/retrieval. Capric–myristic–stearic acid (CMS) ternary eutectic mixture as model PCM was firstly prepared. The developed CA nano-felts as supporting material was mechanically flexible and was made from CA/polyvinylpyrrolidone (PVP) precursor composite nanofibers followed by removal of PVP components. The effects of original mass ratio of CA/PVP on absorption capacities of CA nano-felts were studied. The modified CA nano-felts with groove/porous structure and rough surfaces were capable of absorbing a large amount of PCMs. The morphological structures, as well as the properties of thermal energy storage, thermal stability and reliability, and thermal insulation of composite PCMs were characterized by scanning electron microscopy, differential scanning calorimetry, and thermal performance measurement, respectively. The results showed that CMS eutectic was absorbed in and/or supported by modified CA nano-felts. The heat enthalpy values of composite PCMs have slightly decreased in comparison with the corresponding theoretical values. The composite PCMs demonstrated good thermal stability and reliability after thermal cycles. The composite PCMs had high thermal insulation capability for temperature regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pomianowski M, Heiselberg P, Zhang YP. Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 2013;67:56–69.

    Article  Google Scholar 

  2. Tang QQ, Sun J, Yu SM, Wang GC. Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes. RSC Adv. 2014;4:36584–90.

    Article  CAS  Google Scholar 

  3. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.

    Article  CAS  Google Scholar 

  4. Yuan YP, Zhang N, Tao WQ, Cao XL, He YL. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98.

    Article  CAS  Google Scholar 

  5. Fu XW, Liu ZM, Wu B, Wang JL, Lei JX. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim. 2016;123(2):1173–81.

    Article  CAS  Google Scholar 

  6. Liang W, Chen PS, Sun HX, Zhu ZQ, Li A. Innovative spongy attapulgite loaded with n-carboxylic acids as composite phase change materials for thermal energy storage. RSC Adv. 2014;4:38535–41.

    Article  CAS  Google Scholar 

  7. Zhu FR, Zhang L, Zeng JL, Zhu L, Zhu Z, Zhu XY, Li RH, Xiao ZL, Cao Z. Preparation and thermal properties of palmitic acid/polyaniline/copper nanowires form-stable phase change materials. J Therm Anal Calorim. 2014;115(2):1133–41.

    Article  CAS  Google Scholar 

  8. Genc ZK, Canbay CA, Acar SS, Sekerci M, Genc M. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene-palmitic acid. J Therm Anal Calorim. 2015;120(3):1679–88.

    Article  CAS  Google Scholar 

  9. Zhao P, Yue QY, He HT, Gao BY, Wang Y, Li Q. Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions. Appl Energy. 2014;115:483–90.

    Article  CAS  Google Scholar 

  10. Ke HZ, Pang ZY, Peng B, Wang J, Cai YB, Huang FL, Wei QF. Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver. J Therm Anal Calorim. 2016;123(2):1293–307.

    Article  CAS  Google Scholar 

  11. Cao L, Tang YJ, Fang GY. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage. Energy. 2015;80:98–103.

    Article  CAS  Google Scholar 

  12. Yang XJ, Yuan YP, Zhang N, Cao XL, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.

    Article  CAS  Google Scholar 

  13. Zhang N, Yuan YP, Wang X, Cao XL, Yang XJ, Hu SC. Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J. 2013;231:214–9.

    Article  CAS  Google Scholar 

  14. Yuan YG, Yuan YP, Zhang N, Du YX, Cao XL. Preparation and thermal characterization of capric–myristic–palmitic acid/expanded graphite composite as phase change material for energy storage. Mater Lett. 2014;125:154–7.

    Article  CAS  Google Scholar 

  15. Meng X, Zhang HZ, Sun LX, Xu F, Jiao QZ, Zhao ZM, Zhang J, Zhou HY, Sawada Y, Liu YL. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials J Therm Anal Calorim. 2013;111(1):377–84.

    CAS  Google Scholar 

  16. Zhang N, Yuan YP, Yuan YG, Li TY, Cao XL. Lauric–palmitic–stearic acid/expanded perlite composite as form-stable phase change material: preparation and thermal properties. Energy Build. 2014;82:505–11.

    Article  Google Scholar 

  17. Dheep GR, Sreekumar A. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials: a review. Energy Convers Manag. 2014;83:133–48.

    Article  Google Scholar 

  18. Sari A, Karli A, Alkan C, Karaipekli A. Polyethyl methacrylate (PEMA)/fatty acids blends as novel phase change materials for thermal energy storage. Energy Sources Part A: Recov Util Environ Eff. 2013;35:1813–9.

    Article  CAS  Google Scholar 

  19. Kenisarin MM, Kenisarina KM. Form-stable phase change materials for thermal energy storage. Renew Sust Energy Rev. 2012;16:1999–2040.

    Article  CAS  Google Scholar 

  20. Cai YB, Gao CT, Zhang T, Zhang Z, Wei QF, Du JM, Hu Y, Song L. Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats. Renew Energy. 2013;57:163–70.

    Article  CAS  Google Scholar 

  21. Cai YB, Zong X, Zhang JJ, Hu YY, Wei QF, He GF, Wang XX, Zhao Y, Fong H. Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy. Sol Energy Mater Sol Cells. 2013;109:160–8.

    Article  CAS  Google Scholar 

  22. Cai YB, Xu XL, Gao CT, Bian TY, Qiao H, Wei QF. Structural morphology and thermal performance of composite phase change materials consisting of capric acid series fatty acid eutectics and electrospun polyamide6 nanofibers for thermal energy storage. Mater Lett. 2012;89:43–6.

    Article  CAS  Google Scholar 

  23. Zong X, Cai YB, Sun GY, Zhao Y, Huang FL, Song L, Hu Y, Fong H, Wei QF. Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval. Sol Energy Mater Sol Cells. 2015;132:183–90.

    Article  CAS  Google Scholar 

  24. Xiang T, Zhang ZL, Liu HQ, Yin ZZ, Li L, Liu XM. Characterization of cellulose-based electrospun nanofiber membrane and its adsorptive behaviours using Cu(II), Cd(II), Pb(II) as models. Sci China-Chem. 2013;56:567–75.

    Article  CAS  Google Scholar 

  25. Saljoughi E, Mohammadi T. Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: preparation, morphology and performance. Desalination. 2009;249:850–4.

    Article  CAS  Google Scholar 

  26. Castillo-Ortega MM, Najera-Luna A, Rodriguez-Felix DE, Encinas JC, Rodriguez-Felix F, Romero J, Herrera-Franco PJ. Preparation, characterization and release of amoxicillin from cellulose acetate and poly(vinyl pyrrolidone) coaxial electrospun fibrous membranes. Mater Sci Eng C-Mater Biol Appl. 2011;31:1772–8.

    Article  CAS  Google Scholar 

  27. Zavastin D, Cretescu I, Bezdadea M, Bourceanu M, Dragan M, Lisa G, Mangalagiu I, Vasic V, Savic J. Preparation, characterization and applicability of cellulose acetate-polyurethane blend membrane in separation techniques. Colloid Surf A-Physicochem Eng Asp. 2010;370:120–8.

    Article  CAS  Google Scholar 

  28. Ramesh S, Shanti R, Morris E. Characterization of conducting cellulose acetate based polymer electrolytes doped with “green” ionic mixture. Carbohydr Polym. 2013;91:14–21.

    Article  CAS  Google Scholar 

  29. Bai J, Li YX, Zhang CQ, Liang XF, Yang QB. Preparing AgBr nanoparticles in poly(vinyl pyrrolidone) (PVP) nanofibers. Colloid Surf A-Physicochem Eng Asp. 2008;329:165–8.

    Article  CAS  Google Scholar 

  30. Gao MJ, Sun L, Wang ZQ, Zhao YB. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater Sci Eng C-Mater Biol Appl. 2013;33:397–404.

    Article  CAS  Google Scholar 

  31. Fang GY, Li H, Liu X. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage. Mater Chem Phys. 2010;122:533–6.

    Article  CAS  Google Scholar 

  32. Fang GY, Li H, Chen Z, Liu X. Preparation and properties of palmitic acid/SiO2 composites with flame retardant as thermal energy storage materials. Sol Energy Mater Sol Cells. 2011;95:1875–81.

    Article  CAS  Google Scholar 

  33. Cai YB, Sun GY, Liu MM, Zhang J, Wang QQ, Wei QF. Fabrication and characterization of capric–lauric–palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval. Sol Energy. 2015;118:87–95.

    Article  CAS  Google Scholar 

  34. Mehrali M, Latibari ST, Mehrali M, Metselaar HSC, Silakhori M. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manag. 2013;67:275–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the China Postdoctoral Science Foundation (No. 2015T80496), the Fundamental Research Funds for the Central Universities (No. JUSRP51621A), Jiangsu Universities “Qing Lan” Project (No. 2016 [15]), National Undergraduate Innovation and Training Program (No. 201610295043) and High-level Innovative and Entrepreneurial Talents in Jiangsu Province (No. 2015 [26]).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yibing Cai or Qufu Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Song, X., Liu, M. et al. Flexible cellulose acetate nano-felts absorbed with capric–myristic–stearic acid ternary eutectic mixture as form-stable phase-change materials for thermal energy storage/retrieval. J Therm Anal Calorim 128, 661–673 (2017). https://doi.org/10.1007/s10973-016-5937-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5937-1

Keywords

Navigation