Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 141–153 | Cite as

Synergy in flame-retarded epoxy resin

Identification of chemical interactions by solid-state NMR
  • Aleksandra Sut
  • Sebastian Greiser
  • Christian Jäger
  • Bernhard Schartel


The potential synergists aluminium diethylphosphinate (AlPi), boehmite (AlO(OH)) and melamine polyphosphate (MPP) were compared in flame-retardant epoxy resin (EP)/melamine poly(magnesium phosphate) (S600). The pyrolysis, the fire behaviour as well as the chemical interactions in the gas and condensed phases were investigated by various methods. Flammability was investigated by cone calorimeter and oxygen index (OI). The thermal and thermo-oxidative decomposition were studied by thermogravimetric analysis coupled with FTIR spectrometer. The special focus was on the investigation of structural changes in the condensed phase via solid-state NMR of 27Al and 31P nuclei. By the comparison of epoxy resin with only one additive or with S600 in combination with AlPi, AlO(OH) or MPP, it was possible to calculate the synergy index. The best performance in terms of fire behaviour was observed for EP/S600/MPP with a PHRR (peak heat release rate) of 208 kW m−2 due to slight synergy. In the case of THE (total heat evolved), clear synergy occurred for EP/S600/AlPi and EP/S600/AlO(OH). By solid-state NMR, different phosphates and aluminates were identified, indicating the chemical interactions between S600 and AlPi, AlO(OH) or MPP. The systematic multi-methodical approach yielded insight into the synergistic effects in the flame-retarded epoxy resin.


Synergy Epoxy resin Flame retardancy Melamine poly(magnesium phosphate) Solid-state NMR 



The authors would like to say special thanks to Tobias Kukofka for LOI measurements, to Patrick Müller and Thomas Rybak for help with the sample preparation and to Patrick Klack for technical support.


  1. 1.
    Lee H, Neville K. Handbook of epoxy resins. New York: McGraw-Hill; 1982.Google Scholar
  2. 2.
    Ellis B. Chemistry and technology of epoxy resins. Chemistry and technology of epoxy resins. London: Blackie Academic & Professional; 1993.CrossRefGoogle Scholar
  3. 3.
    Pham HQ, Marks MJ. Epoxy resins. In: Kirk RE, Othmer DF, Kroschwitz JI, Howe-Grant M, editors. Kirk-othmer encyclopedia of chemical technology. New York: Wiley; 1991.Google Scholar
  4. 4.
    Wawrzyn E, Schartel B, Karrasch A, Jäger C. Flame-retarded bisphenol a polycarbonate/silicon rubber/bisphenol a bis(diphenyl phosphate): adding inorganic additives. Polym Degrad Stab. 2014;106:74–87.CrossRefGoogle Scholar
  5. 5.
    Despinasse M-C, Schartel B. Aryl phosphate-aryl phosphate synergy in flame-retarded bisphenol a polycarbonate/acrylonitrile-butadiene-styrene. Thermochim Acta. 2013;563:51–61.CrossRefGoogle Scholar
  6. 6.
    Despinasse M-C, Schartel B. Influence of the structure of aryl phosphates on the flame retardancy of polycarbonate/acrylonitrile-butadiene-styrene. Polym Degrad Stab. 2012;97:2571–80.CrossRefGoogle Scholar
  7. 7.
    Langfeld K, Wilke A, Sut A, Greiser S, Ulmer B, Andrievici V, et al. Halogen-free fire retardant styrene-ethylene-butylene-styrene-based thermoplastic elastomers using synergistic aluminium diethylphosphinate-based combinations. J Fire Sci. 2015;33:157–77.CrossRefGoogle Scholar
  8. 8.
    Wang Y, Zhang L, Yang Y, Cai X. Synergistic flame retardant effects and mechanisms of aluminum diethylphosphinate (AlPi) in combination with aluminum trihydrate (ATH) in UPR. J Therm Anal Calorim. 2016;125:839–48.CrossRefGoogle Scholar
  9. 9.
    Zhang F, Chen P, Wang Y, Li S. Smoke suppression and synergistic flame retardancy properties of zinc borate and diantimony trioxide in epoxy-based intumescent fire-retardant coating. J Therm Anal Calorim. 2016;123:1319–27.CrossRefGoogle Scholar
  10. 10.
    Zhang L, Wang Y, Liu Q, Cai X. Synergistic effects between silicon-containing flame retardant and DOPO on flame retardancy of epoxy resins. J Therm Anal Calorim. 2016;123(2):1343–50.CrossRefGoogle Scholar
  11. 11.
    Schartel B, Perret B, Dittrich B, Ciesielski M, Krämer J, Müller P, et al. Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macomol Mater Eng. 2016;301:9–35.CrossRefGoogle Scholar
  12. 12.
    Döring M, Ciesielski M, Heinzmann C. Synergistic flame retardant mixtures in epoxy resins. In: Morgan AB, Wilkie CA, Nelson GL, editors. Fire and polymers VI: new advances in flame retardant chemistry and science. Washington: ACS Symposium Series; 2012.Google Scholar
  13. 13.
    Braun U, Schartel B, Fichera MA, Jager C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stab. 2007;92(8):1528–45.CrossRefGoogle Scholar
  14. 14.
    Wehner W, Dave T. Inventors; phosphorhaltige triazin-verbindungen als flammschutzmittel. Germany; 2009.Google Scholar
  15. 15.
    Köstler H-G, Wehner W. Inventors; flammschutzmittelzusammensetzungen enthaltend triazin-interkalierte metall-phosphate. Germany; 2012.Google Scholar
  16. 16.
    Naik A, Fontaine G, Samyn F, Delva X, Bourgeois Y, Bourbigot S. Melamine integrated metal phosphates as non-halogenated flame retardants: synergism with aluminium phosphinate for flame retardancy in glass fiber reinforced polyamide 66. Polym Degrad Stab. 2013;98:2653–62.CrossRefGoogle Scholar
  17. 17.
    Naik A, Fontaine G, Samyn F, Delva X, Louisy J, Bellayer S, et al. Outlining the mechanism of flame retardancy in polyamide 66 blended with melamine-poly(zinc phosphate). Fire Safety J. 2014;70:46–60.CrossRefGoogle Scholar
  18. 18.
    Naik A, Fontaine G, Samyn F, Delva X, Louisy J, Bellayer S, et al. Mapping the multimodal action of melamine-poly(aluminium phosphate) in the flame retardancy of polyamide 66. RCS Adv. 2014;4:18406–18.Google Scholar
  19. 19.
    Müller P, Schartel B. Melamine poly(metal phosphates) as flame retardant in epoxy resin: performance, modes of action, and synergy. J Appl Polym Sci. 2016;133(24):43549.Google Scholar
  20. 20.
    Schartel B, Bartholmai M, Knoll U. Some comments on the use of cone calorimeter data. Polym Degrad Stab. 2005;88:540–7.CrossRefGoogle Scholar
  21. 21.
    Brehme S, Köppl T, Schartel B, Altstädt V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. E Polym. 2014;14(3):193–208.Google Scholar
  22. 22.
    Schartel B, Hull TR. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.CrossRefGoogle Scholar
  23. 23.
    Schartel B. Uses of Fire Tests in Materials Flammability Development. In: Wilkie CA, Morgan AB, editors. Fire retardancy of polymeric materials. Boca Raton: CRC Press; 2010. p. 421–51.Google Scholar
  24. 24.
    Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B. Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol. 2013;24(10):916–26.CrossRefGoogle Scholar
  25. 25.
    Braun U, Bahr H, Sturm H, Schartel B. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation. Polym Adv Technol. 2008;19:680–92.CrossRefGoogle Scholar
  26. 26.
    Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate). Macomol Mater Eng. 2008;293:206–17.CrossRefGoogle Scholar
  27. 27.
    Duquesne S, Fontaine G, Cerin-Delaval O, Gardelle B, Tricot G, Bourbigot S. Study of the thermal degradation of an aluminium phosphinate-aluminium trihydrate combination. Thermochim Acta. 2013;551:175–83.CrossRefGoogle Scholar
  28. 28.
    Gallo E, Braun U, Schartel B, Russo P, Acierno D. Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polym Degrad Stab. 2009;94(8):1245–53.CrossRefGoogle Scholar
  29. 29.
    Gallo E, Schartel B, Braun U, Russo P, Acierno D. Fire retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly(butylene terephthalate). Polym Adv Technol. 2011;22(12):2382–91.CrossRefGoogle Scholar
  30. 30.
    Gallo E, Schartel B, Acierno D, Russo P. Flame retardant biocomposites: synergism between phosphinate and nanometric metal oxides. Eur Polym J. 2011;47(7):1390–401.CrossRefGoogle Scholar
  31. 31.
    Täuber K, Marsico F, Wurm FR, Schartel B. Hyperbranched poly(phosphoester)s as flame retardants for technical and high performance polymers. Polym Chem. 2014;5:7042–53.CrossRefGoogle Scholar
  32. 32.
    Weil ED. Additivity, synergism and antagonism in flame retardancy. In: Kuryla WC, Papa AJ, editors. Flame retardancy of polymeric materials. New York: Marcel Dekker; 1975. p. 185–243.Google Scholar
  33. 33.
    Müller P, Morys M, Sut A, Jäger C, Illerhaus B, Schartel B. Melamine poly(zinc phosphate) as flame retardant in epoxy resin: decomposition pathways, molecular mechanism and morphology of fire residues. Polym Degrad Stab. 2016;130:307–19.CrossRefGoogle Scholar
  34. 34.
    Perret B, Schartel B, Stoss K, Ciesielski M, Diederichs J, Doring M, et al. A new halogen-free flame retardant based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries. Macromol Mater Eng. 2011;296(1):14–30.CrossRefGoogle Scholar
  35. 35.
    Lee L-H. Mechanisms of thermal degradation of phenolic condensation polymers. II. Thermal stability and degradation schemes of epoxy resins. J Polym Sci Part A. 1965;3(3):859–82.Google Scholar
  36. 36.
    Levchik SV, Camino G, Luda MP, Costa L, Muller G, Costes B. Epoxy resins cured with aminophenylmethylphosphine oxide—II. Mechanism of thermal decomposition. Polym Degrad Stab. 1998;60(1):169–83.CrossRefGoogle Scholar
  37. 37.
    Sut A, Greiser S, Jäger C, Schartel B. Interactions in multicomponent flame-retardant polymers: solid-state NMR identifying the chemistry behind it. Polym Degrad Stab. 2015;121:116–25.CrossRefGoogle Scholar
  38. 38.
    Müller D, Gessner W, Samoson A, Lippmaa E, Scheler G. Solid-state 27Al NMR studies on polycrystalline aluminates of the system CaO–Al2O3. Polyhedron. 1986;5:779–85.CrossRefGoogle Scholar
  39. 39.
    Fichera MA, Braun U, Schartel B, Sturm H, Knoll U, Jäger C. Solid-state NMR investigations of the pyrolysis and thermo-oxidative decomposition products of a polystyrene/red phosphorus/magnesium hydroxide system. J Anal Appl Pyrolysis. 2007;78(2):378–86.CrossRefGoogle Scholar
  40. 40.
    Fayon F, Massiot D, Suzuya K, Price DL. 31P NMR study of magnesium phosphate glasses. J Non Cryst Solids. 2001;283:88–94.CrossRefGoogle Scholar
  41. 41.
    Jahromi S, Gabriëlse W, Braam A. Effect of melamine polyphosphate on thermal degradation of polyamides: a combined X-ray diffraction and solid-state NMR study. Polymer. 2003;44:25–37.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und –prüfung (BAM)BerlinGermany
  2. 2.Bundesanstalt für Materialforschung und –prüfung (BAM)BerlinGermany

Personalised recommendations