Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 399–406 | Cite as

Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models

Article

Abstract

Organic peroxides are widely used unstable compounds that have caused many serious industrial incidents. Self-accelerating decomposition temperature (SADT) is one of the most important parameters to describe the thermal instability hazards of organic peroxides. However, it is very difficult to obtain experimental data of SADT due to high cost, the time involved and safety issues of laboratory tests. Quantitative structure–property relationship (QSPR) models have been proposed as an effective tool to predict thermal stability of organic peroxides. In this work, a dataset including 50 SADTs of organic peroxides was built and their molecular descriptors were calculated at B3LYP/6-31G(d) level using Gaussian 09. Two novel predictive models were successfully developed by multiple linear regression (MLR) and support vector machine (SVM). Both models were validated to have an excellent goodness of fit, internal robustness and external predictive ability. The MLR model was a linear equation with the average absolute error of training set and test set being 9.78 and 9.91, while the SVM model was a nonlinear model with the two values being 4.33 and 5.75, respectively. The SVM model has higher accuracy and is much more effective than the MLR model. This research provides general guidelines and methodology of establishing QSPR models to predict SADTs for other organic peroxides and unstable hazardous chemicals.

Keywords

Self-accelerating decomposition temperature (SADT) Thermal analysis and stability Quantitative structure–property relationship (QSPR) Organic peroxides Gaussian 09 

References

  1. 1.
    Wang YW, Liao MS, Shu CM. Thermal hazards of a green antimicrobial peracetic acid combining DSC calorimeter with thermal analysis equations. J Therm Anal Calorim. 2015;119(3):2257–67.CrossRefGoogle Scholar
  2. 2.
    Chi JH, Wu SH, Shu CM. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications. J Hazard Mater. 2009;171(1–3):1145–9.CrossRefGoogle Scholar
  3. 3.
    Lee MH, Chen JR, Das M, Hsieh TF, Shu CM. Thermokinetic parameter evaluation by DSC and TAM III along with accountability of mass loss by TG from the thermal decomposition analyses of benzoyl peroxide. J Therm Anal Calorim. 2015;122(3):1143–50.CrossRefGoogle Scholar
  4. 4.
    Chen WT, Chen WC, You ML, Tsai YT, Shu CM. Evaluation of thermal decomposition phenomenon for 1,1-bis(tertbutylperoxy)-3,3,5-trimethylcyclohexane by DSC and VSP2. J Therm Anal Calorim. 2015;122(3):1125–33.CrossRefGoogle Scholar
  5. 5.
    Lu Y, Ng D, Miao L, Mannan MS. Key observations of cumene hydroperoxide concentration on runaway reaction parameters. Thermochim Acta. 2010;501(1–2):65–71.CrossRefGoogle Scholar
  6. 6.
    Liu SH, Hou HY, Chen JW, Weng SY, Lin YC, Shu CM. Effects of thermal runaway hazard for three organic peroxides conducted by acids and alkalines with DSC, VSP2, and TAM III. Thermochim Acta. 2013;566:226–32.CrossRefGoogle Scholar
  7. 7.
    Pan Y, Zhang Y, Jiang J, Ding L. Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structure–property relationship (QSPR) approach. J Loss Prev Proc. 2014;31:41–9.CrossRefGoogle Scholar
  8. 8.
    Foresman JB, Frisch AE. Exploring chemistry with electronic structure methods. 2nd ed. Gaussian Inc.: Pittsburgh, PA; 1996.Google Scholar
  9. 9.
    Wang Q, Zhang Y, Rogers WJ, Mannan MS. Molecular simulation studies on chemical reactivity of methylcyclopentadiene. J Hazard Mater. 2009;165(1–3):141–7.CrossRefGoogle Scholar
  10. 10.
    Ochterski JW. Thermochemistry in Gaussian. Gaussian Inc.; 2000. http://www.lct.jussieu.fr/manuels/Gaussian03/g_whitepap/thermo/thermo.pdf. Accessed 2 June 2000.
  11. 11.
    Wang Q, Mannan MS. Prediction of thermochemical properties for gaseous ammonia oxide. J Chem Eng Data. 2010;55(11):5128–32.CrossRefGoogle Scholar
  12. 12.
    Sun J, Li Y, Hasegawa K. A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry. J Loss Prev Proc. 2001;14(5):331–6.CrossRefGoogle Scholar
  13. 13.
    Bosch CM, Velo E, Recasens F. Safe storage temperature of peroxide initiators: prediction of self-accelerated decomposition temperature based on a runaway heuristics. Chem Eng Sci. 2001;56(4):1451–7.CrossRefGoogle Scholar
  14. 14.
    Yu Y, Hasegawa K. Derivation of the self-accelerating decomposition temperature for self-reactive substances using isothermal calorimetry. J Hazard Mater. 1996;45(2–3):193–205.CrossRefGoogle Scholar
  15. 15.
    Gao Y, Xue Y, Lü Z, Wang Z, Chen Q, Shi N, Sun F. Self-accelerating decomposition temperature and quantitative structure-property relationship of organic peroxides. Process Saf Environ Prot. 2015;94:322–8.CrossRefGoogle Scholar
  16. 16.
    Yang D, Koseki H, Hasegawa K. Predicting the self-accelerating decomposition temperature (SADT) of organic peroxides based on non-isothermal decomposition behavior. J Loss Prev Proc. 2003;16(5):411–6.CrossRefGoogle Scholar
  17. 17.
    Prana V, Rotureau P, Fayet G, Andréc D, Hub S, Vicot P, Rao L, Adamoa C. Prediction of the thermal decomposition of organic peroxides by validated QSPR models. J Hazard Mater. 2014;276:216–24.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford; 2010.Google Scholar
  20. 20.
    Reyes OJ, Patel SJ, Mannan MS. Quantitative structure property relationship studies for predicting dust explosibility characteristics (K st, P max) of organic chemical dusts. Ind Eng Chem Res. 2011;50(4):2373–9.CrossRefGoogle Scholar
  21. 21.
    Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013;111(2):1033–7.CrossRefGoogle Scholar
  22. 22.
    Wang Q, Ng D, Mannan MS. Study on the reaction mechanism and kinetics of the thermal decomposition of nitroethane. Ind Eng Chem Res. 2009;48(18):8745–51.CrossRefGoogle Scholar
  23. 23.
    Lu Y, Ng D, Mannan MS. Prediction of the reactivity hazards for organic peroxides using the QSPR approach. Ind Eng Chem Res. 2011;50(3):1515–22.CrossRefGoogle Scholar
  24. 24.
    Wang Q, Rogers WJ, Mannan MS. Thermal risk assessment and rankings for reaction hazards in process safety. J Therm Anal Calorim. 2009;98:225–33.CrossRefGoogle Scholar
  25. 25.
    Vapnik V. The nature of statistical learning theory. 2nd ed. Berlin: Springer; 2013.Google Scholar
  26. 26.
    Vapnik VN, Vapnik V. Statistical learning theory. London: Wiley; 1998.Google Scholar
  27. 27.
    de Cerqueira Lima P, Golbraikh A, Oloff S, Xiao Y, Tropsha A. Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model. 2006;46(3):1245–54.CrossRefGoogle Scholar
  28. 28.
    Fatemi MH, Gharaghani S. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorgan Med Chem. 2007;15(24):7746–54.CrossRefGoogle Scholar
  29. 29.
    Fatemi MH, Gharaghani S, Mohammadkhani S, Rezaie Z. Prediction of selectivity coefficients of univalent anions for anion-selective electrode using support vector machine. Electrochim Acta. 2008;53(12):4276–82.CrossRefGoogle Scholar
  30. 30.
    Niazi A, Jameh-Bozorghi S, Nori-Shargh D. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines. J Hazard Mater. 2008;151(2–3):603–9.CrossRefGoogle Scholar
  31. 31.
    Pan Y, Jiang J, Wang R, Cao H, Cui Y. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine. J Hazard Mater. 2009;168(2–3):962–9.CrossRefGoogle Scholar
  32. 32.
    Alexander G, Alexander T. Beware of q2! J Mol Graph Model. 2002;20(4):269–76.CrossRefGoogle Scholar
  33. 33.
    Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):27:1–27:27. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.School of Resources and Civil EngineeringNortheastern UniversityShenyangChina
  2. 2.Department of Fire Protection and SafetyOklahoma State UniversityStillwaterUSA

Personalised recommendations