Skip to main content
Log in

Surface modification of aluminum hypophosphite and its application for polyurethane foam composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aluminum hypophosphite (AHP) is surface modified by melamine derivative to fabricate reactive solid flame retardant (MCAHP) for polyurethane foam. MCAHP is successfully prepared and characterized by FTIR and SEM. The flame-retarded efficiency of MCAHP in PU is higher than that of AHP. It demonstrated that MCAHP has better compatibility in PU matrix compared with AHP based on the SEM observation. After surface modification, due to the reaction between MCAHP and PU matrix, crosslinking might be formed between MCAHP and PU matrix, which contributes to the excellent compatibility of MCAHP in PU matrix, and as a result, the glass transition temperature of PU/MCAHP is 4 °C higher than that of PU/AHP. The thermal behavior of PU composites is characterized by TG and TG-FTIR, and results suggest the sublimation of melamine at about 320 °C because of the decomposition of the melamine derivative. The sublimation of melamine can consume abundant heat and dilute the oxygen concentration, which is benefit for the improvement of flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3

Similar content being viewed by others

References

  1. Tang Z, Maroto-Valer MM, Andrésen JM, Miller JW, Listemann ML, McDaniel PL, et al. Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents. Polymer. 2002;43(24):6471–9.

    Article  CAS  Google Scholar 

  2. Tan SQ, Abraham T, Ference D, Macosko CW. Rigid polyurethane foams from a soybean oil-based polyol. Polymer. 2011;52(13):2840–6. doi:10.1016/j.polymer.2011.04.040.

    Article  CAS  Google Scholar 

  3. Luo F, Wu K, Lu M, Nie S, Li X, Guan X. Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam. J Therm Anal Calorim. 2015;120(2):1327–35.

    Article  CAS  Google Scholar 

  4. Chen M-J, Chen C-R, Tan Y, Huang J-Q, Wang X-L, Chen L, Wang Y-Z. Inherently flame-retardant flexible polyurethane foam with low content of phosphorus-containing cross-linking agent. Ind Eng Chem Res. 2014;53:1160–71. doi:10.1021/ie4036753.

    Article  CAS  Google Scholar 

  5. Morgan AB, Gilman JW. An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 2013;37(4):259–79.

    Article  CAS  Google Scholar 

  6. Chen X, Jiang Y, Jiao C. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117(2):857–66.

    Article  CAS  Google Scholar 

  7. Gouri ME, Bachiri AE, Hegazi SE, Rafik M, Harfi AE. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with dgeba epoxy resin. Polym Degrad Stab. 2009;94(11):2101–6.

    Article  Google Scholar 

  8. Howell BA, Uzibor J. Pentaphenyl-1,3,2-dioxaphospholane as a reactive flame retardant. J Vinyl Add Technol. 2006;12(4):192–7.

    Article  CAS  Google Scholar 

  9. Wazarkar K, Kathalewar M, Sabnis A. Improvement in flame retardancy of polyurethane dispersions by newer reactive flame retardant. Prog Org Coat. 2015;87:75–82.

    Article  CAS  Google Scholar 

  10. Sohn JI, Lim ST, Park SH, Choi HJ, Jhon MS. Effect of a reactive-type flame retardant on rheological and mechanical properties of PC/ABS blends. J Mater Sci. 2003;38(7):1485–91.

    Article  CAS  Google Scholar 

  11. Ge H, Tang G, Hu W-Z, Wang B-B, Pan Y, Song L, et al. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater. 2015;294:186–94.

    Article  CAS  Google Scholar 

  12. Zhou X, Li J, Wu YG. Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide. Polym Adv Technol. 2015;26(3):255–65. doi:10.1002/pat.3451.

    Article  CAS  Google Scholar 

  13. Tang G, Wang X, Zhang R, Yang W, Hu Y, Song L, et al. Facile synthesis of lanthanum hypophosphite and its application in glass-fiber reinforced polyamide 6 as a novel flame retardant. Compos Part A Appl Sci Manuf. 2013;54:1–9. doi:10.1016/j.compositesa.2013.07.001.

    Article  CAS  Google Scholar 

  14. Zhao HB, Liu BW, Wang XL, Chen L, Wang XL, Wang YZ. A flame-retardant-free and thermo-cross-linkable copolyester: flame-retardant and anti-dripping mode of action. Polymer. 2014;55(10):2394–403. doi:10.1016/j.polymer.2014.03.044.

    Article  CAS  Google Scholar 

  15. Tang G, Wang X, Xing WY, Zhang P, Wang BB, Hong NN, et al. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res. 2012;51(37):12009–16. doi:10.1021/ie3008133.

    Article  CAS  Google Scholar 

  16. Bugajny M, Bourbigot S, Bras ML, Delobel R. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polym Int. 1999;48(4):264–70.

    Article  CAS  Google Scholar 

  17. Chen X, Huo L, Jiao C, Li S. TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrolysis. 2013;100:186–91. doi:10.1016/j.jaap.2012.12.017.

    Article  CAS  Google Scholar 

  18. Gao G, Moya S, Lichtenfeld H, Casoli A, Fiedler H, Donath E, et al. The decomposition process of melamine formaldehyde cores: the key step in the fabrication of ultrathin polyelectrolyte multilayer capsules. Macromol Mater Eng. 2001;286(6):355–61.

    Article  CAS  Google Scholar 

  19. Wang ZZ, Lv P, Hu Y, Hu KL. Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol. J Anal Appl Pyrolysis. 2009;86(1):207–14. doi:10.1016/j.jaap.2009.06.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from Guangdong Natural Science Foundation, China (Nos. 2015A030313798, 2016A030313161) and Guangdong Special Support Program-Youth Top-notch Talent (No. 2014TQ01C400) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Wu, K., Lu, M. et al. Surface modification of aluminum hypophosphite and its application for polyurethane foam composites. J Therm Anal Calorim 129, 767–775 (2017). https://doi.org/10.1007/s10973-016-5908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5908-6

Keywords

Navigation