Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 115–124 | Cite as

Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate

Structural and kinetic studies
  • Nafise Modanlou Juibari
  • Abbas Eslami
Article

Abstract

ZnAl2O4 and ZnMn2O4 nanoparticles were synthesized by a modified co-precipitation method and characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersion X-ray spectrometer, and their morphology investigated by means of scanning electron microscopy. The effects of these nanoparticles on the thermal decomposition of ammonium perchlorate (AP) were examined by differential scanning calorimetery and thermogravimetery analyses. The results revealed that ZnAl2O4 nanoparticles have little catalytic effect on this process, but ZnMn2O4 nanoparticles have good catalytic effect on decreasing the decomposition temperature of AP and increasing the released heat. ZnAl2O4 and ZnMn2O4 nanoparticles increased the released heat of AP decomposition from 400 to about 736 and 1130 Jg−1, respectively, and AP decomposition temperature decreased from 420 to 400 and 358 °C in the same order. The higher catalytic activity of ZnMn2O4 can be due to its p-type semiconductivity and the presence of some positive hole and defects. Also, the kinetic parameters such as pre-exponential factor and activation energy were calculated using Kissinger method.

Keywords

Co-precipitation ZnAl2O4 and ZnMn2O4 nanoparticles Ammonium perchlorate Spinel Thermal decomposition Catalytic effect 

Notes

Acknowledgements

We gratefully acknowledge a financial support from the research council of University of Mazandaran.

References

  1. 1.
    Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443(1):1–36.CrossRefGoogle Scholar
  2. 2.
    Dedgaonkar V, Sarwade D. Effects of different additives on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1990;36(1):223–9.CrossRefGoogle Scholar
  3. 3.
    Chen LJ, Li GS, Li LP. CuO nanocrystals in thermal decomposition of ammonium perchlorate: stabilization, structural characterization and catalytic activities. J Therm Anal Calorim. 2008;91(2):581–7.CrossRefGoogle Scholar
  4. 4.
    Singh G, Kapoor IPS, Dubey R, Srivastava P. Synthesis, characterization and catalytic activity of CdO nanocrystals. Mater Sci Eng, B. 2011;176(2):121–6.CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Liu X, Nie J, Yu L, Zhong Y, Huang C. Improve the catalytic activity of α-Fe2O3 particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface. J Solid State Chem. 2011;184(2):387–90.CrossRefGoogle Scholar
  6. 6.
    Hosseini SG, Toloti SJ, Babaei K, Ghavi A. The effect of average particle size of nano-Co3O4 on the catalytic thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;124(3):1243–54.CrossRefGoogle Scholar
  7. 7.
    Ayoman E, Hosseini SG. Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;123(2):1213–24.CrossRefGoogle Scholar
  8. 8.
    Yin JZ, Lu QY, Yu ZN, Wang JJ, Pang H, Gao F. Hierarchical ZnO nanorod-assembled hollow superstructures for catalytic and photoluminescence applications. Cryst Growth Des. 2009;10(1):40–3.CrossRefGoogle Scholar
  9. 9.
    Sun X, Qiu X, Li L, Li G. ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate. Inorg Chem. 2008;47(10):4146–52.CrossRefGoogle Scholar
  10. 10.
    Zhao S, Ma D. Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate. J Nanomater. 2010;2010:48.Google Scholar
  11. 11.
    Aijun H, Juanjuan L, Mingquan Y, Yan LI, Xinhua PE. Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate. Chin J Chem Eng. 2011;19(6):1047–51.CrossRefGoogle Scholar
  12. 12.
    Jia Z, Ren D, Wang Q, Zhu R. A new precursor strategy to prepare ZnCo2O4 nanorods and their excellent catalytic activity for thermal decomposition of ammonium perchlorate. Appl Surf Sci. 2013;270:312–8.CrossRefGoogle Scholar
  13. 13.
    Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloy Compd. 2008;464(1):532–6.CrossRefGoogle Scholar
  14. 14.
    Liu T, Wang L, Yang P, Hu B. Preparation of nanometer CuFe 2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate. Mater Lett. 2008;62(24):4056–8.CrossRefGoogle Scholar
  15. 15.
    Wei SH, Zhang SB. First-principles study of cation distribution in eighteen closed-shell AIIB2IIIO 4 and AIVB2IIO4 spinel oxides Phys. Rev B. 2001;63(4):045112.CrossRefGoogle Scholar
  16. 16.
    Nilsson M, Jansson K, Jozsa P, Pettersson LJ. Catalytic properties of Pd supported on ZnO/ZnAl2O4/Al2O3 mixtures in dimethyl ether autothermal reforming. Appl Catal B Environ. 2009;86(1):18–26.CrossRefGoogle Scholar
  17. 17.
    Wrzyszcz J, Zawadzki M, Trzeciak AM, Ziołkowski JJ. Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: preparation and activity. J Mol Catal A Chem. 2002;189:203–10.CrossRefGoogle Scholar
  18. 18.
    Wrzyszcz J, Zawadzki M, Trzeciak AM, Ziólkowski JJ. Metal-support effects of platinum supported on zinc aluminate. Vaccum. 2002;189(2):203–10.Google Scholar
  19. 19.
    Phani AR, Passacantando M, Santucci S. Synthesis and characterization of zinc aluminum oxide thin films by sol–gel technique. Mater Chem Phys. 2001;68(1):66–71.CrossRefGoogle Scholar
  20. 20.
    Zawadzki M, Wrzyszcz J, Strek W, Hreniak D. Preparation and optical properties of nanocrystalline and nanoporous Tb doped alumina and zinc aluminate. J Alloy Compd. 2001;323:279–82.CrossRefGoogle Scholar
  21. 21.
    Li X, Zhu Z, Zhao Q, Wang L. Photocatalytic degradation of gaseous toluene over ZnAl 2O4 prepared by different methods: a comparative study. J Hazard Mater. 2011;186(2):2089–96.CrossRefGoogle Scholar
  22. 22.
    Tzing WS, Tuan WH. The strength of duplex Al2O3-ZnAl2O4 composite. J Mater Sci Lett. 1996;15(16):1395–6.CrossRefGoogle Scholar
  23. 23.
    Courtel FM, Duncan H, Abu-Lebdeh Y, Davidson IJ. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J Mater Chem. 2011;21(27):10206–18.CrossRefGoogle Scholar
  24. 24.
    Bai Z, Fan N, Sun C, Ju Z, Guo C, Yang J, Qian Y. Facile synthesis of loaf-like ZnMn 2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale. 2013;5(6):2442–7.CrossRefGoogle Scholar
  25. 25.
    Choi SH, Kang YC. Characteristics of ZnMn2O4 nanopowders prepared by flame spray pyrolysis for use as anode material in lithium ion batteries. Int J Electrochem Sci. 2013;8:6281.Google Scholar
  26. 26.
    Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893–946.CrossRefGoogle Scholar
  27. 27.
    Banerjee M, Verma N, Prasad R. Structural and catalytic properties of Zn1 − xCu xFe2O4 nanoparticles. J Mater Sci. 2007;42(5):1833–7.CrossRefGoogle Scholar
  28. 28.
    Liu X, Wang X, Zhang J, Hu X, Lu L. A study of nanocrystalline TiO2 preparation with inorganotitanates and gelatin dispersant: thermal analysis of complex gel. Thermochim Acta. 1999;342(1):67–72.CrossRefGoogle Scholar
  29. 29.
    Birks LS, Fridman H. Particle size determination from X-ray line broadening. J Appl Phys. 1946;17(8):687–92.CrossRefGoogle Scholar
  30. 30.
    Mcarthur TL, Hutchison T, McKannan J, Cassingham CV, Co-precipitation method. U.S. Patent Application. 2013, 14/384,130.Google Scholar
  31. 31.
    Harvey D. Modern Analytical Chemistry. New York: McGraw-Hill; 2000.Google Scholar
  32. 32.
    Cooley RF, Reed JS. Equilibrium cation distribution in NiAl2O4, CuAl2O4, and ZnAl2O4 spinels. J Am Ceram Soc. 1972;55(8):395–8.CrossRefGoogle Scholar
  33. 33.
    Cullity BD, Stock SR. Elements of X-Ray Diffraction. 3rd ed. Upper Saddle River: Prentice-Hall Inc.; 2001.Google Scholar
  34. 34.
    Yang Y, Zhao Y, Xiao L, Zhang L. Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem Commun. 2008;10(8):1117–20.CrossRefGoogle Scholar
  35. 35.
    Olhero SM, Ganesh I, Torres PM, Ferreira JM. Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing. Langmuir. 2008;24(17):9525–30.CrossRefGoogle Scholar
  36. 36.
    Fisher GB, Brett AS. Identification of an adsorbed hydroxyl species on the Pt (111) surface. Phys Rev Lett. 1980;44(10):683.CrossRefGoogle Scholar
  37. 37.
    Phambu N. Characterization of aluminum hydroxide thin film on metallic aluminum powder. Mater Lett. 2003;57(19):2907–13.CrossRefGoogle Scholar
  38. 38.
    Mazza D, Vallino M, Busca G. Mullite-Type Structures in the Systems Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3. J Am Ceram Soc. 1992;75(7):1929–34.CrossRefGoogle Scholar
  39. 39.
    Tarte P. Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta Part A. 1967;23(7):2127–43.CrossRefGoogle Scholar
  40. 40.
    Zhang P, Li X, Zhao Q, Liu S. Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods. Nanoscale Res Lett. 2011;6(1):1–8.Google Scholar
  41. 41.
    Rui SO, Hong-jun WA, Shou-hua FE. Solvothermal Preparation of Mn3O4 Nanoparticles and Effect of Temperature on Particle Size. Chem Res Chin Univ. 2012;28(4):577–80.Google Scholar
  42. 42.
    Imran M, Al-Masry WA, Mahmood A, Hassan A, Haider S, Ramay SM. Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly (ethylene terephthalate) via glycolysis. Polym Degrad Stab. 2013;98(4):904–15.CrossRefGoogle Scholar
  43. 43.
    Hosseini SG, Alavi MA, Ghavi A, Toloti SJ, Agend F. Modeling of burning rate equation of ammonium perchlorate particles over Cu–Cr–O nanocomposites. J Therm Anal Calorim. 2015;119(1):99–109.CrossRefGoogle Scholar
  44. 44.
    Wang Y, Yang X, Lu L, Wang X. Experimental study on preparation of LaMO3 (M = Fe Co, Ni) nanocrystals and their catalytic activity. Thermochim Acta. 2006;443(2):225–30.CrossRefGoogle Scholar
  45. 45.
    Liu L, Li F, Tan L, Ming L, Yi Y. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellant Explos Pyrotech. 2004;29(1):34–8.CrossRefGoogle Scholar
  46. 46.
    Eslami A, Juibari NM, Hosseini SG. Fabrication of ammonium perchlorate/copperchromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Mater Chem Phys. 2016;181:12–20.CrossRefGoogle Scholar
  47. 47.
    Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2013;113:721–30.CrossRefGoogle Scholar
  48. 48.
    Li N, Geng Z, Cao M, Ren L, Zhao X, Liu B, Tian Y, Hu C. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon. 2013;54:124–32.CrossRefGoogle Scholar
  49. 49.
    Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17(2):135–49.CrossRefGoogle Scholar
  50. 50.
    Zhou Z, Tian S, Zeng D, Tang G, Xie C. MOX (M = Zn Co, Fe)/AP shell–core nanocomposites for self-catalytical decomposition of ammonium perchlorate. J Alloy Compd. 2012;513:213–9.CrossRefGoogle Scholar
  51. 51.
    Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012;217:330–9.CrossRefGoogle Scholar
  52. 52.
    Said A. The role of copper-chromium oxide catalysts in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1991;37(5):959–67.CrossRefGoogle Scholar
  53. 53.
    Rosso L, Tuckerman ME. Direct evidence of an anomalous charge transport mechanism in ammonium perchlorate crystal in an ammonia-rich atmosphere from first-principles molecular dynamics. Solid State Ionics. 2003;161(3):219–29.CrossRefGoogle Scholar
  54. 54.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–9.CrossRefGoogle Scholar
  55. 55.
    Morisaki S, Komamiya K. Differential thermal analysis and thermogravimetry of ammonium perchlorate at pressures up to 51 ATM. Thermochim Acta. 1975;12(3):239–51.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations