Skip to main content
Log in

Thermal conductivity enhancement of SiO2–MWCNT (85:15 %)–EG hybrid nanofluids

ANN designing, experimental investigation, cost performance and sensitivity analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, measurement and optimization of the thermal conductivity of a hybrid nanofluid are carried out. SiO2 nanoparticles with average diameter of 20–30 nm and multi-walled carbon nanotube (MWCNT), with internal and external diameter of 2–6 and 5–20 nm, respectively, were dispersed in ethylene glycol and made the hybrid SiO2–MWCNT (85:15)–ethylene glycol nanofluid. The thermal conductivity of nanofluids in volume fractions of 0.05–1.95 % at temperatures between 30 and 50 °C is measured experimentally. The results indicated that thermal conductivity ratio (TCR) of hybrid nanofluids increases nonlinearly with increasing temperature and concentration. Thus, the greatest increase in TCR at a concentration of 1.94 % and a temperature of 50 °C was 22.2 %. Studying the cost of production and the suspension of hybrid nanofluid and nanofluid containing SiO2 and MWCNT particles illustrated that using the hybrid nanofluid could be the most optimal one in terms of cost and percentage of TCR. In order to model the thermal conductivity of hybrid nanofluid, two design methods and feed-forward neural network were provided. R 2 value of new methods and artificial neural network (ANN) was obtained 0.9864 and 0.9981, respectively. Comparing these two data estimation methods with experimental data showed that both methods are accurate for predicting data. But ANN has much less error than the correlation outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

T :

Temperature (°C)

w :

Mass (g)

k :

Thermal conductivity (W m−1 °C−1)

ρ :

Density (kg m−3)

φ :

Particle volume fraction

nf:

Nanofluid

bf:

Base fluid

References

  1. Wang B-X, Sheng W-Y, Peng X-F. A novel statistical clustering model for predicting thermal conductivity of nanofluid. Int J Thermophys. 2009;30:1992–8.

    Article  CAS  Google Scholar 

  2. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.

    Google Scholar 

  3. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the ASME int. mech. eng. congr. expo., vol. 66; 1995. p. 99–105.

  4. Xing M, Yu J, Wang R. Thermo-physical properties of water-based single-walled carbon nanotube nanofluid as advanced coolant. Appl Therm Eng. 2015;87:344–51.

    Article  CAS  Google Scholar 

  5. Aberoumand S, Jafarimoghaddam A, Moravej M, Aberoumand H, Javaherdeh K. Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl Therm Eng. 2016;101:362–72.

    Article  CAS  Google Scholar 

  6. Mena JB, Ubices De Moraes AA, Benito YR, Ribatski G. Parise JAR. Extrapolation of Al2O3–water nanofluid viscosity for temperatures and volume concentrations beyond the range of validity of existing correlations. Appl Therm Eng. 2013;51:1092–7. doi:10.1016/j.applthermaleng.2012.11.002.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Saedodin S, Asadi A. An empirical investigation on the dynamic viscosity of Mg(OH)2–ethylene glycol in different solid concentrations and proposing new correlation based on experimental data. Int J Nat Eng Sci. 2014;8:29–34.

    Google Scholar 

  8. Hemmat Esfe M, Abbasian Arani AA, Rezaie M, Yan W-M, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S0735193315001177.

  9. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  CAS  Google Scholar 

  10. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117:675–81.

    Article  CAS  Google Scholar 

  11. Hemmat Esfe M, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2–ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120:1145–9.

    Article  CAS  Google Scholar 

  12. Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016. Doi:10.1007/s10973-016-5548-x.

    Google Scholar 

  13. Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119:1205–13.

    Article  CAS  Google Scholar 

  14. Motahari K, Abdollahi-Moghaddam M, Rezaei A. An experimental investigation of reduced water consumption of coolers using various concentrations of CuO/water nanofluid instead of pure water. In: 4th annual international conference on chem. chem. eng. chem. process (CCECP 2016). Global Science & Technology Forum (GSTF); 2016.

  15. Hosseinipour E, Heris SZ, Shanbedi M. Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube. J Therm Anal Calorim. 2016;124:205–14.

    Article  CAS  Google Scholar 

  16. Moshizi SA, Malvandi A. Different modes of nanoparticle migration at mixed convection of Al2O3–water nanofluid inside a vertical microannulus in the presence of heat generation/absorption. J Therm Anal Calorim. 2016;1–16. Doi:10.1007/s10973-016-5560-1.

  17. Li H, Wang L, He Y, Hu Y, Zhu J, Jiang B. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl Therm Eng. 2014;88:363–8. doi:10.1016/j.applthermaleng.2014.10.071.

    Article  Google Scholar 

  18. Hemmat Esfe M, Saedodin S, Sina N, Afrand M, Rostami S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S073519331500127X.

  19. Hemmat Esfe M, Hassani Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.

    Article  CAS  Google Scholar 

  20. Hemmat Esfe M, Hassani Ahangar MR, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43.

    Article  CAS  Google Scholar 

  21. Hemmat Esfe M, Rostamian H, Toghraie D, Yan W-M. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126:643–8.

    Article  CAS  Google Scholar 

  22. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng. 2010;30:2213–8. doi:10.1016/j.applthermaleng.2010.05.036.

    Article  CAS  Google Scholar 

  23. Buonomo B, Manca O, Marinelli L, Nardini S. Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl Therm Eng. 2015;91:181–90. doi:10.1016/j.applthermaleng.2015.07.077.

    Article  CAS  Google Scholar 

  24. Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J Therm Anal Calorim. 2014;117:675–81.

    Article  Google Scholar 

  25. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8.

    Article  CAS  Google Scholar 

  26. Hemmat Esfe M, Hadi Rostamian S, Alirezaie A. An applicable study on the thermal conductivity of SWCNT–MgO hybrid nanofluid and price-performance analysis for energy management. Eng: Appl Therm; 2016.

    Google Scholar 

  27. Hemmat Esfe M, Yan W-M, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT–ZnO/water–EG nanofluids. Int Commun Heat Mass Transf. 2015;68:248–51 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S0735193315001980.

  28. Hemmat Esfe M, Saedodin S, Akbari M, Karimipour A, Afrand M, Wongwises S, et al. Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid. Int Commun Heat Mass Transf. 2015;65:47–51. doi:10.1016/j.icheatmasstransfer.2015.04.006.

    Article  CAS  Google Scholar 

  29. Hemmat Esfe M, Karimipour A, Yan W-M, Akbari M, Safaei MR, Dahari M. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf. 2015;88:728–34 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S0017931015004913.

  30. Hemmat Esfe M, Afrand M, Karimipour A, Yan W-M, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass Transf. 2015;67:173–5 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S0735193315001505.

  31. Hemmat Esfe M, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124:455–60.

    Article  CAS  Google Scholar 

  32. Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun. Heat Mass Transf. 2015;66:100–4 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S0735193315000925.

  33. Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S, et al. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. Int Commun Heat Mass Transf. 2015;63:35–40 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S0735193315000093.

  34. Hemmat Esfe M, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun. Heat Mass Transf. 2015;68:98–103 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S073519331500175X.

  35. Hemmat Esfe M, Afrand M, Yan W-M, Akbari M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int Commun Heat Mass Transf. 2015;66:246–9 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S0735193315001165.

  36. Hemmat Esfe M, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S, et al. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int Commun Heat Mass Transf. 2015;67:46–50 (cited 2 Apr 2016). http://www.sciencedirect.com/science/article/pii/S0735193315001293.

  37. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  CAS  Google Scholar 

  38. Rostamian SH, Hemmat Esfe M, Hajmohammad MH, Toghraie D, Sarsam WS, Dahari M. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transf. 2016 (in press).

  39. Pang C, Jung J-Y, Lee JW, Kang YT. Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles. Int J Heat Mass Transf. 2012;55:5597–602.

    Article  CAS  Google Scholar 

  40. Tavman I, Turgut A, Chirtoc M, Schuchmann HP, Tavman S. Experimental investigation of viscosity and thermal conductivity of suspensions containing nanosized ceramic particles. Arch Mater Sci. 2008;100:99–103.

    Google Scholar 

  41. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  42. Sun C, Bai B, Lu W-Q, Liu J. Shear-rate dependent effective thermal conductivity of H2O + SiO2 nanofluids. Phys Fluids. 2013;25:52002.

    Article  Google Scholar 

  43. Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M, Reynaud C. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. 2008;103:94309.

    Article  Google Scholar 

  44. Lee S, Choi S-S, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280–9.

    Article  CAS  Google Scholar 

  45. Liu M-S, Lin MC, Huang I-T, Wang C-C. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf. 2005;32:1202–10.

    Article  CAS  Google Scholar 

  46. Shima PD, Philip J, Raj B. Influence of aggregation on thermal conductivity in stable and unstable nanofluids. Appl Phys Lett. 2010;97:153113.

    Article  Google Scholar 

  47. Xie H, Yu W, Li Y, Chen L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res Lett. 2011;6:124.

    Article  Google Scholar 

  48. Maïga SEB, Nguyen CT, Galanis N, Roy G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 2004;35:543–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemmat Esfe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Behbahani, P., Arani, A. et al. Thermal conductivity enhancement of SiO2–MWCNT (85:15 %)–EG hybrid nanofluids . J Therm Anal Calorim 128, 249–258 (2017). https://doi.org/10.1007/s10973-016-5893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5893-9

Keywords

Navigation