Skip to main content
Log in

Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Double-tube heat exchanger is primarily adapted to high-temperature, high-pressure applications due to their relatively small diameters. An experimental study performed to investigate the effects of Al2O3/water nanofluid on the hydrodynamics and convective heat transfer of a counter flow double-tube heat exchanger. The nanofluid was used as hot fluid and passed through the inner tube of the heat exchanger considering fully developed turbulent flow regime. Experiments were conducted at the nanofluid flow rates of 7, 9, and 11 L min−1, nanofluid inlet temperatures of 45, 55, and 65 °C, and dilute nanoparticle concentrations of 0.05 and 0.15 vol%. Local convective heat transfer coefficient in double-tube heat exchanger has been measured experimentally for the first time. Results showed that nanofluids had higher Nusselt number than pure water. Also, the Nusselt number increased by increasing particles volume fraction, flow rate as well as temperature of nanofluid. However, increasing the convective heat transfer coefficient of the nanofluids was not sensible with increasing the concentration. In addition, the ratio of the heat transfer coefficient of nanofluid to that of the base fluid decreased by increasing Reynolds number. Adding γ-Al2O3 nanoparticles to the base fluid increased the friction factor. In this study, the greatest enhancement in the heat transfer coefficient and the friction factor obtained at 0.15 vol% concentration of nanoparticles which were 23 and 25 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

CNT:

Carbon nanotube

C p :

Specific heat (J K−1 °C−1)

DWCNTs:

Double-walled carbon nanotubes

D B :

Brownian diffusion coefficient

D T :

Thermophoresis diffusion coefficient

Exp:

Experimental

EG:

Ethylene glycol

f :

Friction factor

h :

Heat transfer coefficient (W m−2 K−1)

h :

Hour

ID:

Inner diameter (mm)

k :

Thermal conductivity (W m−1 K−1)

L:

Liter

L :

Length of the test section (m)

N BT :

Ratio of the Brownian to thermophoretic diffusivities

Nu :

Nusselt number

P :

Pressure (Pa)

PC:

Personal computer

Pe :

Peclet number

Pr :

Prandtl number

PID:

Proportional–integral–derivative

PVC:

Polyvinyl chloride

q :

Heat transfer rate (kW)

Q h :

Volume flow rate of hot water (L min−1)

Q c :

Volume flow rate of cooling water (L min−1)

Ra :

Rayleigh number

Re :

Reynolds number

TEM:

Transmission electron microscopy

T :

Temperature (°C)

V :

Volt

vol:

Volume

x :

Axial distance

φ :

Volume fraction

ε :

Roughness (m)

μ :

Viscosity (Pa s)

ρ :

Density (kg m−3)

:

Difference

av:

Average

b:

Bulk

bf:

Base fluid

c:

Cold

e:

Equivalent

h:

Hot

i:

Inner

nf:

Nanofluid

o:

Outer

p:

Particle

w:

Wall

x:

Local

References

  1. Choi SUS, editor. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition; 1995; New York, USA.

  2. Esfe MH, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124(1):455–60.

    Article  Google Scholar 

  3. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125(1):1–9.

    Article  Google Scholar 

  4. Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO 2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  CAS  Google Scholar 

  5. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe 3 O 4–Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.

    Article  CAS  Google Scholar 

  6. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Therm Fluid Sci. 2016;76:221–7.

    Article  CAS  Google Scholar 

  7. Esfe MH, Afrand M, Karimipour A, Yan W-M, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass. 2015;67:173–5.

    Article  Google Scholar 

  8. Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl Therm Eng. 2016;105:716–23. doi:10.1016/j.applthermaleng.2016.03.089.

    Article  CAS  Google Scholar 

  9. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125(1):151–5. doi:10.1115/1.1532008.

    Article  CAS  Google Scholar 

  10. Yu W, Xie H, Li Y, Chen L, Wang Q. Experimental investigation on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water as base fluid. Powder Technol. 2012;230:14–9. doi:10.1016/j.powtec.2012.06.016.

    Article  CAS  Google Scholar 

  11. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181–8. doi:10.1016/j.ijheatmasstransfer.2004.07.012.

    Article  CAS  Google Scholar 

  12. Peyghambarzadeh SM, Hashemabadi SH, Jamnani MS, Hoseini SM. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Appl Therm Eng. 2011;31(10):1833–8. doi:10.1016/j.applthermaleng.2011.02.029.

    Article  CAS  Google Scholar 

  13. Hosseinipour E, Heris SZ, Shanbedi M. Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-5137-4.

    Google Scholar 

  14. Tarighaleslami AH, Walmsley TG, Walmsley MR, Atkins MJ, Neale JR. Heat transfer enhancement in heat recovery loops using nanofluids as the intermediate fluid. Chem Eng. 2015;45:991–6.

    Google Scholar 

  15. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. J Therm Anal Calorim. 2016;124(2):827–38.

    Article  CAS  Google Scholar 

  16. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  Google Scholar 

  17. Bahiraei M. A numerical study of heat transfer characteristics of CuO–water nanofluid by Euler-Lagrange approach. J Therm Anal Calorim. 2016;123(2):1591–9.

    Article  CAS  Google Scholar 

  18. El-Maghlany WM, Hanafy AA, Hassan AA, El-Magid MA. Experimental study of Cu–water nanofluid heat transfer and pressure drop in a horizontal double-tube heat exchanger. Exp Therm Fluid Sci. 2016;78:100–11.

    Article  CAS  Google Scholar 

  19. Malvandi A, Ganji DD. Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field. Int J Therm Sci. 2014;84:196–206. doi:10.1016/j.ijthermalsci.2014.05.013.

    Article  CAS  Google Scholar 

  20. Malvandi A, Ghasemi A, Ganji D. Thermal performance analysis of hydromagnetic Al2O3–water nanofluid flows inside a concentric microannulus considering nanoparticle migration and asymmetric heating. Int J Therm Sci. 2016;109:10–22.

    Article  CAS  Google Scholar 

  21. Malvandi A, Ganji D. Effects of nanoparticle migration on water/alumina nanofluid flow inside a horizontal annulus with a moving core. J Mech. 2015;31(03):291–305.

    Article  CAS  Google Scholar 

  22. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf. 2014;73:186–94. doi:10.1016/j.ijheatmasstransfer.2014.01.069.

    Article  Google Scholar 

  23. Darzi AAR, Farhadi M, Sedighi K. Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. Int Commun Heat Mass. 2013;47:105–12. doi:10.1016/j.icheatmasstransfer.2013.06.003.

    Article  CAS  Google Scholar 

  24. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1–3):334–44. doi:10.1016/j.ijheatmasstransfer.2009.09.024.

    Article  CAS  Google Scholar 

  25. Zamzamian A, Oskouie SN, Doosthoseini A, Joneidi A, Pazouki M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp Therm Fluid Sci. 2011;35(3):495–502. doi:10.1016/j.expthermflusci.2010.11.013.

    Article  CAS  Google Scholar 

  26. Hemmat Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluid Sci. 2014;52:68–78. doi:10.1016/j.expthermflusci.2013.08.023.

    Article  CAS  Google Scholar 

  27. Chun B-H, Kang H, Kim S. Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J Chem Eng. 2008;25(5):966–71. doi:10.1007/s11814-008-0156-5.

    Article  CAS  Google Scholar 

  28. Aghayari R, Maddah H, Ashori F, Hakiminejad A, Aghili M. Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow. Heat Mass Transfer. 2014;. doi:10.1007/s00231-014-1415-0.

    Google Scholar 

  29. Khalifa AJN, Banwan MA. Effect of volume fraction of γ-Al2O3 nanofluid on heat transfer enhancement in a concentric tube heat exchanger. Heat Transf Eng. 2015;36(16):1387–96. doi:10.1080/01457632.2015.1003719.

    Article  CAS  Google Scholar 

  30. Sarafraz MM, Hormozi F. Intensification of forced convection heat transfer using biological nanofluid in a double-pipe heat exchanger. Exp Therm Fluid Sci. 2015;66:279–89. doi:10.1016/j.expthermflusci.2015.03.028.

    Article  CAS  Google Scholar 

  31. Sergis A, Hardalupas Y. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res Lett. 2011;6(1):391.

    Article  Google Scholar 

  32. Fotukian SM, Nasr Esfahany M. Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube. Int J Heat Fluid Flow. 2010;31(4):606–12. doi:10.1016/j.ijheatfluidflow.2010.02.020.

    Article  CAS  Google Scholar 

  33. Ni R, Zhou S-Q, Xia K-Q. An experimental investigation of turbulent thermal convection in water-based alumina nanofluid. Phys Fluids. 2011;23(2):022005. doi:10.1063/1.3553281.

    Article  Google Scholar 

  34. Peyghambarzadeh SM, Hashemabadi SH, Naraki M, Vermahmoudi Y. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl Therm Eng. 2013;52(1):8–16. doi:10.1016/j.applthermaleng.2012.11.013.

    Article  CAS  Google Scholar 

  35. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, et al. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2, Supplement):e119–23. doi:10.1016/j.cap.2008.12.047.

    Article  Google Scholar 

  36. Anoop KB, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf. 2009;52(9–10):2189–95. doi:10.1016/j.ijheatmasstransfer.2007.11.063.

    Article  CAS  Google Scholar 

  37. Nasiri M, Etemad SG, Bagheri R. Experimental heat transfer of nanofluid through an annular duct. Int Commun Heat Mass Transf. 2011;38(7):958–63. doi:10.1016/j.icheatmasstransfer.2011.04.011.

    Article  CAS  Google Scholar 

  38. White FM. Viscous fluid flow. 2nd ed. New York: McGraw-Hill, Inc.; 2006.

    Google Scholar 

  39. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17. doi:10.1016/0894-1777(88)90043-X.

    Article  Google Scholar 

  40. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–70. doi:10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  41. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transfer. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  42. Einstein A. A new determination of the molecular dimensions. Annphysics. 1906;19(2):289–306.

    CAS  Google Scholar 

  43. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.

    Google Scholar 

  44. Williams W, Buongiorno J, Hu L-W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf. 2008;130(4):042412.

    Article  Google Scholar 

  45. Gnielinski V. New equations for heat and mass-transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16(2):359–68.

    Google Scholar 

  46. White FM. Fluid mechanics. 4th ed. New York: McGraw-Hill, Inc; 2001.

    Google Scholar 

  47. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  48. Yu W, France DM, Smith DS, Singh D, Timofeeva EV, Routbort JL. Heat transfer to a silicon carbide/water nanofluid. Int J Heat Mass Transf. 2009;52(15–16):3606–12. doi:10.1016/j.ijheatmasstransfer.2009.02.036.

    Article  CAS  Google Scholar 

  49. Yu W, France D, Timofeeva E, Singh D, Routbort J. Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow. Appl Phys Lett. 2010;96(21):213109.

    Article  Google Scholar 

  50. Yu W, France DM, Timofeeva EV, Singh D, Routbort JL. Comparative review of turbulent heat transfer of nanofluids. Int J Heat Mass Transf. 2012;55(21):5380–96.

    Article  CAS  Google Scholar 

  51. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64. doi:10.1016/S0142-727X(99)00067-3.

    Article  CAS  Google Scholar 

  52. Heris SZ, Esfahany MN, Etemad SG. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28(2):203–10.

    Article  Google Scholar 

  53. Fotukian SM, Nasr Esfahany M. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass. 2010;37(2):214–9. doi:10.1016/j.icheatmasstransfer.2009.10.003.

    Article  CAS  Google Scholar 

  54. Sajadi AR, Kazemi MH. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. Int Commun Heat Mass. 2011;38(10):1474–8. doi:10.1016/j.icheatmasstransfer.2011.07.007.

    Article  CAS  Google Scholar 

  55. Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46. doi:10.1016/j.ijheatfluidflow.2005.02.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Shahraki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raei, B., Shahraki, F., Jamialahmadi, M. et al. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim 127, 2561–2575 (2017). https://doi.org/10.1007/s10973-016-5868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5868-x

Keywords

Navigation